Involvement of Fnr and ArcA in anaerobic expression of the tdc operon of Escherichia coli. 1997

S Chattopadhyay, and Y Wu, and P Datta
Department of Biological Chemistry, The University of Michigan, Ann Arbor 48109-0606, USA.

Anaerobic expression of the tdcABC operon in Escherichia coli, as measured by LacZ activity from single-copy tdc-lacZ transcriptional and translational fusions, is greatly reduced in strains lacking two global transcriptional regulators, Fnr and ArcA. The nucleotide sequence of the tdc promoter around -145 shows significant similarity with the consensus Fnr-binding site; however, extensive base substitutions within this region had no effect on Fnr regulation of the tdc genes. A genetic analysis revealed that the effect of Fnr on tdc is not mediated via ArcA. Furthermore, addition of cyclic AMP to the anaerobic incubation medium completely restored tdc expression in fnr and arcA mutants as well as in strains harboring mutations in the Fnr- and ArcA-dependent pfl gene and the Fnr-regulated glpA and frd genes. These results, taken together with the earlier finding that tdc expression is subject to catabolite repression by intermediary metabolites, strongly suggest that the negative regulatory effects of mutations in the fnr and arcA genes are mediated physiologically due to accumulation of a metabolite(s) which prevents tdc transcription in vivo.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013913 Threonine Dehydratase A pyridoxal-phosphate protein that catalyzes the deamination of THREONINE to 2-ketobutyrate and AMMONIA. The role of this enzyme can be biosynthetic or biodegradative. In the former role it supplies 2-ketobutyrate required for ISOLEUCINE biosynthesis, while in the latter it is only involved in the breakdown of threonine to supply energy. This enzyme was formerly listed as EC 4.2.1.16. Threonine Deaminase,Threonine Dehydrase,Threonine Ammonia-Lyase,Ammonia-Lyase, Threonine,Deaminase, Threonine,Dehydrase, Threonine,Dehydratase, Threonine,Threonine Ammonia Lyase

Related Publications

S Chattopadhyay, and Y Wu, and P Datta
March 1994, Molecular microbiology,
S Chattopadhyay, and Y Wu, and P Datta
August 1999, IUBMB life,
S Chattopadhyay, and Y Wu, and P Datta
April 1991, Molecular & general genetics : MGG,
S Chattopadhyay, and Y Wu, and P Datta
March 2001, Molecular microbiology,
S Chattopadhyay, and Y Wu, and P Datta
June 1990, Journal of bacteriology,
S Chattopadhyay, and Y Wu, and P Datta
May 1988, Molecular microbiology,
S Chattopadhyay, and Y Wu, and P Datta
March 1994, Molecular microbiology,
Copied contents to your clipboard!