The influence of apolipoprotein structure on the efflux of cellular free cholesterol to high density lipoprotein. 1994

W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
Medical College of Pennsylvania, Department of Biochemistry, Philadelphia 19129.

The influence of apolipoprotein conformation on the ability of high density lipoprotein (HDL) to remove cellular free cholesterol (FC) has not been studied in detail. To address the effects of amphipathic alpha-helix structure on cellular FC efflux, three class A helical peptides and apolipoprotein (apo) AI were complexed to dimyristoyl phosphatidylcholine (DMPC) to make discoidal complexes that were used as acceptors of cell cholesterol. The peptides consisted of an 18-amino acid, amphipathic, alpha-helical peptide with the sequence DWLKAFYDKVAEKLKEAF (18A), a dimer of 18A covalently linked by a proline residue (37pA), and acetyl-18A-amide (Ac-18A-NH2) that has a higher alpha-helix content than the unblocked 18A molecule. The three peptides strongly mimic the lipid-binding characteristics of the amphipathic segments of apolipoproteins and form discoidal complexes with DMPC that are similar in diameter (11-12 nm) to those formed by human apoAI when reconstituted at a 2.5:1 (w:w) phospholipid to protein ratio. The abilities of these complexes to remove radiolabeled FC were compared in experiments using cultured mouse L-cell fibroblasts; efflux of FC from both the plasma membrane and the lysosomal pools was examined. For each of the acceptors, the removal of cholesterol from the plasma membrane and lysosomal pools was equally efficient. All four discoidal complexes were equally efficient cell membrane FC acceptors when compared at saturating acceptor concentrations of > 200 micrograms of DMPC/ml of medium. However, at the same lipid concentration, protein-free DMPC small unilamellar vesicles (SUV) were significantly less efficient. The initial rates of FC removal from cells at saturating concentrations of acceptor particles (Vmax) were 12, 10, 10, and 11% per h, respectively, for the complexes containing either 18A, Ac-18A-NH2, 37pA, or apoAI, but only 1% cellular FC per h for the DMPC SUV. The 10-fold higher Vmax for the apoprotein/peptide-containing acceptors was likely due to a reversible interaction of apoprotein or peptide with the plasma membrane that changed the lipid packing characteristics in such a way as to increase the rate of FC desorption from the cell surface. This interaction required amphipathic alpha-helical segments, but it was not affected by the length, number, or lipid-binding affinity of the helices. Furthermore, the efflux efficiency was not dependent on the amino acid sequence of the helical segments which suggests that this interaction is not mediated by a specific cell surface binding site.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004134 Dimyristoylphosphatidylcholine A synthetic phospholipid used in liposomes and lipid bilayers for the study of biological membranes. Dimyristoyllecithin,1,2-Dimyristoyl-glycero-3-phosphorylcholine,1,2-Ditetradecanoyl-glycero-3-phosphocholine,1,2-Ditetradecyl-glycero-3-phosphocholine,DMCP,DMPC,1,2 Dimyristoyl glycero 3 phosphorylcholine,1,2 Ditetradecanoyl glycero 3 phosphocholine,1,2 Ditetradecyl glycero 3 phosphocholine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
October 1998, Journal of lipid research,
W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
May 2000, Biochimica et biophysica acta,
W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
March 2003, Circulation,
W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
August 1997, The Journal of biological chemistry,
W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
January 2014, The American journal of cardiology,
W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
September 1997, Arteriosclerosis, thrombosis, and vascular biology,
W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
April 1994, Biochemical and biophysical research communications,
W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
May 2001, American journal of physiology. Cell physiology,
W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
May 1998, Biochimica et biophysica acta,
W S Davidson, and S Lund-Katz, and W J Johnson, and G M Anantharamaiah, and M N Palgunachari, and J P Segrest, and G H Rothblat, and M C Phillips
October 1988, The Journal of biological chemistry,
Copied contents to your clipboard!