A chaperonin from a thermophilic bacterium, Thermus thermophilus. 1993

M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Yokohama, Japan.

Unlike Escherichia coli chaperonins, a chaperonin (cpn) from a thermophilic bacterium, Thermus thermophilus, consisting of homologues to GroEL (cpn 60) and GroES (cpn 10) is co-purified as a large complex. Thermus chaperonin shows a bullet-like shape in the side view seen by electron microscopy, and antibody against cpn 10 binds only to the round side of the bullet. We conclude that a single cpn 60-heptamer ring with two stripes stacks into two layers and a cpn 10 oligomer binds to one side of the layers. The purified Thermus chaperonin contains endogenously bound ADP, and incubation with ATP causes a partial dissociation of chaperonin into cpn 60 monomers and a cpn 10 heptamer. The effect of Thermus chaperonin on protein refolding upon dilution from guanidine HC1 is different at three temperature ranges. At high temperatures above 55 degrees C, where the native proteins are stable but their spontaneous foldings fail, the chaperonin induces productive folding in an ATP-dependent manner. At middle temperatures (25-55 degrees C) where spontaneous foldings of the enzymes occur, the chaperonin slows down the rate of folding without changing the final yield of productive folding. At lower temperatures below 25 degrees C where spontaneous foldings also occur, the chaperonin arrests the folding even in the presence of ATP. When a solution of relatively heat labile protein is incubated at high temperatures, and then residual activity of the protein is measured at its optimal temperature after incubation with ATP, the temperature that causes irreversible heat denaturation of the protein is elevated about 10 degrees C by inclusion of Thermus chaperonin in the solution.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
August 1998, Biochemical Society transactions,
M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
January 1998, Methods in enzymology,
M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
July 2004, Microbiology (Reading, England),
M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
December 2003, Journal of biochemistry,
M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
December 1993, Journal of biochemistry,
M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
May 1991, Biochemical and biophysical research communications,
M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
May 1985, European journal of biochemistry,
M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
January 1996, Journal of biochemistry,
M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
June 2020, Antibiotics (Basel, Switzerland),
M Yoshida, and N Ishii, and E Muneyuki, and H Taguchi
February 1996, Nucleic acids research,
Copied contents to your clipboard!