Mismatch DNA recognition protein from an extremely thermophilic bacterium, Thermus thermophilus HB8. 1996

S Takamatsu, and R Kato, and S Kuramitsu
Department of Biology, Faculty of Science, Osaka University, Toyonaka, Japan.

The mutS gene, implicated in DNA mismatch repair, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence encoded a 819-amino acid protein with a molecular mass of 91.4 kDa. Its predicted amino acid sequence showed 56 and 39% homology with Escherichia coli MutS and human hMsh2 proteins, respectively. The T.thermophilus mutS gene complemented the hypermutability of the E.coli mutS mutant, suggesting that T.thermophilus MutS protein was active in E.coli and could interact with E.coli MutL and/or MutH proteins. The T.thermophilus mutS gene product was overproduced in E.coli and then purified to homogeneity. Its molecular mass was estimated to be 91 kDa by SDS-PAGE but approx. 330 kDa by size-exclusion chromatography, suggesting that T.thermophilus MutS protein was a tetramer in its native state. Circular dichroic measurements indicated that this protein had an alpha-helical content of approx. 50%, and that it was stable between pH 1.5 and 12 at 25 degree C and was stable up to 80 degree C at neutral pH. Thermus thermophilus MutS protein hydrolyzed ATP to ADP and Pi, and its activity was maximal at 80 degrees C. The kinetic parameters of the ATPase activity at 65 degrees C were Km = 130 microM and Kcat = 0.11 s(-1). Thermus thermophilus MutS protein bound specifically with G-T mismatched DNA even at 60 degrees C.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016963 Thermus thermophilus A species of gram-negative, aerobic, rod-shaped bacteria found in hot springs of neutral to alkaline pH, as well as in hot-water heaters.

Related Publications

S Takamatsu, and R Kato, and S Kuramitsu
December 1993, Journal of biochemistry,
S Takamatsu, and R Kato, and S Kuramitsu
December 2003, Journal of biochemistry,
S Takamatsu, and R Kato, and S Kuramitsu
January 1996, Journal of biochemistry,
S Takamatsu, and R Kato, and S Kuramitsu
March 2002, Bioscience, biotechnology, and biochemistry,
S Takamatsu, and R Kato, and S Kuramitsu
February 1998, Nucleic acids research,
S Takamatsu, and R Kato, and S Kuramitsu
January 1993, Journal of bacteriology,
S Takamatsu, and R Kato, and S Kuramitsu
July 2004, Microbiology (Reading, England),
S Takamatsu, and R Kato, and S Kuramitsu
May 1985, European journal of biochemistry,
Copied contents to your clipboard!