Regulation of Dictyostelium morphogenesis by cAMP-dependent protein kinase. 1993

J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, U.K.

During formation of the Dictyostelium slug extracellular cAMP signals direct the differentiation of prespore cells and DIF, a chlorinated hexaphenone, induces the differentiation of prestalk cells. At culmination the slug transforms into a fruiting body, composed of a stalk supporting a ball of spores. A dominant inhibitor of cAMP-dependent protein kinase (PKA) expressed under the control of a prestalk-specific promoter blocks the differentiation of prestalk cells into stalk cells. Analysis of a gene specifically expressed in stalk cells suggests that PKA acts to remove a repressor that prevents the premature induction of stalk cell differentiation by DIF during slug migration. PKA is also necessary for the morphogenetic movement of prestalk cells at culmination. Expression of the PKA inhibitor under control of a prespore-specific promoter blocks the accumulation of prespore mRNA sequences and prevents terminal spore cell differentiation. Thus PKA is essential for progression along both pathways of terminal differentiation but with different mechanisms of action. On the stalk cell pathway it acts to regulate the action of DIF while on the spore cell pathway PKA itself seems to act as the inducer of spore cell maturation. Ammonia, the extracellular signal which regulates the entry into culmination, acts by controlling the intracellular concentration of cAMP and thus exerts its effects via PKA. The fact that PKA is necessary for both prespore and spore gene expression leads us to postulate the existence of a signalling mechanism which converts the progressive rise in cAMP concentration during development into discrete, PKA-regulated gene activation events.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017125 Genes, Protozoan The functional hereditary units of protozoa. Protozoan Genes,Gene, Protozoan,Protozoan Gene

Related Publications

J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
January 1988, Developmental genetics,
J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
November 2002, The Journal of biological chemistry,
J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
June 1987, Developmental biology,
J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
October 1983, FEBS letters,
J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
April 2019, Biochimica et biophysica acta. General subjects,
J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
September 1993, Science (New York, N.Y.),
J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
November 1985, Cell differentiation,
J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
October 2001, Journal of biochemistry,
J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
October 2001, Journal of biochemistry,
J G Williams, and A J Harwood, and N A Hopper, and M N Simon, and S Bouzid, and M Veron
April 2010, The Journal of biological chemistry,
Copied contents to your clipboard!