S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. 1994

J Murfett, and T L Atherton, and B Mou, and C S Gasser, and B A McClure
Department of Biochemistry, University of Missouri-Columbia 65211.

Many angiosperms employ self-incompatibility systems to prevent inbreeding. The simple genetics of such systems have made them attractive models of plant cellular communication. Implicit in the single locus genetics is that only one or a few gene products are necessary for recognition and rejection of incompatible pollen. Results in the sporophytic system of the Brassicaceae suggest that different S-locus products are responsible for the pollen and pistil parts of the recognition and rejection response. In solanaeceous plants, which have a gametophytic self-incompatibility system, the S locus product responsible for the pollen portion of the interaction has not been identified, but ribonucleases encoded by the S-locus (S-RNases) are strongly implicated in the style part of the recognition and rejection reaction. In Nicotiana alata, pollen recognition and rejection occur if its S-allele matches either S-allele in the style. The putative stylar S-RNase is abundant in the transmitting tract, and pollen rejection may be related to action of S-RNase on pollen RNAs. Efforts to understand the molecular basis for pollen recognition and rejection have been limited by the lack of a system for manipulating and expressing S-RNases. Here we use the promoter of a style-expressed gene from tomato to obtain high levels of S-RNase expression in transgenic Nicotiana. Recognition and rejection of N. alata pollen S-alleles occur faithfully in the transgenic plants. Our results show that S-RNases alone are sufficient for pollen rejection in this system.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D011058 Pollen The fertilizing element of plants that contains the male GAMETOPHYTES. Male Gametes, Plant,Male Gametophytes,Microspores, Plant,Plant Microspores,Pollen Grains,Gamete, Plant Male,Gametes, Plant Male,Gametophyte, Male,Gametophytes, Male,Grain, Pollen,Grains, Pollen,Male Gamete, Plant,Male Gametophyte,Microspore, Plant,Plant Male Gamete,Plant Male Gametes,Plant Microspore,Pollen Grain
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002688 Chitinases Glycoside hydrolases that break down glycosidic bonds in CHITIN. They are important for insect and worm morphogenesis and plant defense against pathogens. Human chitinases may play a role in the etiology of allergies and asthma. Chitinase,Endochitinase
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J Murfett, and T L Atherton, and B Mou, and C S Gasser, and B A McClure
November 1999, Proceedings of the National Academy of Sciences of the United States of America,
J Murfett, and T L Atherton, and B Mou, and C S Gasser, and B A McClure
December 1993, The Plant cell,
J Murfett, and T L Atherton, and B Mou, and C S Gasser, and B A McClure
January 2003, Journal of experimental botany,
J Murfett, and T L Atherton, and B Mou, and C S Gasser, and B A McClure
November 2004, The Plant cell,
J Murfett, and T L Atherton, and B Mou, and C S Gasser, and B A McClure
August 2020, The Plant journal : for cell and molecular biology,
J Murfett, and T L Atherton, and B Mou, and C S Gasser, and B A McClure
March 1998, Plant molecular biology,
J Murfett, and T L Atherton, and B Mou, and C S Gasser, and B A McClure
September 2005, The Plant journal : for cell and molecular biology,
J Murfett, and T L Atherton, and B Mou, and C S Gasser, and B A McClure
September 2001, Genetics,
J Murfett, and T L Atherton, and B Mou, and C S Gasser, and B A McClure
May 2021, Plant physiology,
Copied contents to your clipboard!