Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. 1994

W A Suzuki, and D G Amaral
Group in Neurosciences, University of California at San Diego, La Jolla 92093.

The perirhinal and parahippocampal cortices constitute the major sources of cortical input to the monkey entorhinal cortex. Neuropsychological studies have shown that these three cortical regions contribute in an important way to normal memory function. We have investigated the topographic and laminar organization of the reciprocal projections between the entorhinal cortex and these two adjacent cortical areas by placing anterograde and retrograde tracers in all three regions. There were three major findings. First, the perirhinal and parahippocampal cortices have distinct but partially overlapping interconnections with the entorhinal cortex. The perirhinal cortex tends to be interconnected with the rostral two-thirds of the entorhinal cortex while the parahippocampal cortex tends to be interconnected with approximately the caudal two-thirds of the entorhinal cortex. Second, the degree of reciprocity of the interconnections of the entorhinal cortex with the perirhinal and parahippocampal cortices differs. The parahippocampal/entorhinal connections have a high degree of reciprocity. In contrast, the degree of reciprocity of the perirhinal/entorhinal interconnections varies depending on the mediolateral position within the perirhinal cortex; medial portions of the perirhinal cortex exhibit a higher degree of reciprocity with the entorhinal cortex than lateral portions. Third, the projections from the perirhinal and parahippocampal cortices to the entorhinal cortex resemble a feedforward projection, while the projections from the entorhinal cortex to the perirhinal and parahippocampal cortices resemble a feedback projection pattern.

UI MeSH Term Description Entries
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009626 Terminology as Topic Works about the terms, expressions, designations, or symbols used in a particular science, discipline, or specialized subject area. Etymology,Nomenclature as Topic,Etymologies
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W A Suzuki, and D G Amaral
September 2002, The Journal of comparative neurology,
W A Suzuki, and D G Amaral
February 1998, The Journal of comparative neurology,
W A Suzuki, and D G Amaral
August 1998, The Journal of comparative neurology,
Copied contents to your clipboard!