Dual modulation of K+ currents and cytosolic Ca2+ by the peptide TRH and its derivatives in guinea-pig septal neurones. 1993

J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.

1. We describe a dual effect of the peptide TRH (thyrotrophin-releasing hormone) and its derivatives at concentrations between 0.1 and 1 microM on the K+ currents and cytosolic Ca2+ concentration in enzymatically dispersed septal neurones. 2. In response to membrane depolarization, septal neurones recorded under whole-cell patch clamp can generate two major K+ currents: (i) a fast and transient K+ current (I(t)), that after a maximum at 2-5 ms inactivates completely at all membrane potentials in less than 50 ms; and (ii) a slowly activating current (I(s)), which reaches a maximum in 15-20 ms and does not exhibit appreciable inactivation during short-lasting voltage pulses. 3. In about 70% of the neurones tested (n = 48) TRH induced a reversible, and often transient, increase of I(t), I(s) or both K+ conductaNces. In approximately 10% of the cells the peptide had an opposite effect and caused a more protracted and partially reversible attenuation of the amplitude of I(t) and I(s). 4. The dual action of TRH on the K+ currents was mimicked by its derivatives but the effects varied depending on their structural relationship with the precursor neuropeptide. The physiological metabolite cyclo-His-Pro and the synthetic analogue methyl-TRH, in which the carboxyl terminus of the molecule is conserved, increased the K+ currents, whereas depression of the K+ conductances was predominantly observed in the presence of TRH-OH, in which the amino end of TRH is maintained intact. 5. In fura-2-loaded unclamped cells, TRH induced either release of Ca2+ from internal stores, Ca2+ entry, or both. With TRH-OH we never observed mobilization of internal Ca2+ but this peptide evoked a large Ca2+ influx. 6. The results demonstrate that the physiological metabolites of brain TRH (cyclo-His-Pro and TRH-OH) have biological activity. TRH and its derivatives exert two types of regulatory actions on the voltage-gated K+ channels and cytosolic Ca2+ concentration in central neurones, which can be explained assuming that TRH and TRH-derived products interact with different subtypes of brain receptors recognizing preferentially either the amino or the carboxyl termini of the TRH molecule.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
November 1994, The Journal of physiology,
J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
January 1989, Naunyn-Schmiedeberg's archives of pharmacology,
J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
May 1994, Neuroreport,
J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
March 1998, Journal of neurochemistry,
J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
December 1996, The Tohoku journal of experimental medicine,
J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
January 1989, British journal of pharmacology,
J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
August 1998, The American journal of physiology,
J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
January 1989, The Journal of experimental biology,
J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
September 1997, The American journal of physiology,
J Toledo-Aral, and A Castellano, and J Ureña, and J López-Barneo
November 1992, Experimental physiology,
Copied contents to your clipboard!