The cytoplasmic domain of CD4 is sufficient for its down-regulation from the cell surface by human immunodeficiency virus type 1 Nef. 1994

S J Anderson, and M Lenburg, and N R Landau, and J V Garcia
Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101.

Human immunodeficiency virus type 1 Nef down-regulates surface expression of murine and human CD4 but not human CD8. We recently reported that the cytoplasmic domain of CD4 is required for its down-regulation by Nef. Using a chimeric molecule composed of the extracellular and transmembrane domains of human CD8 fused to the cytoplasmic domain of human CD4, we show here that the cytoplasmic domain of CD4 is sufficient for down-regulation by Nef. Since the cytoplasmic domain of CD4 is also the site of its association with p56lck, we used a series of CD4 mutants to determine whether the regions of the cytoplasmic domain of CD4 required for down-regulation by Nef are the same as those required for p56lck binding. Our results indicate that the portion of the cytoplasmic domain required for the down-regulation of CD4 by Nef overlaps with the binding site of p56lck, but the cysteine residues which are essential for the association of CD4 with p56lck are not required. This observation raised the possibility that Nef competes with p56lck for binding to CD4. However, under conditions which are considerably milder than those permissive for coimmunoprecipitation of CD4 and p56lck, we found no evidence for an association between Nef and CD4. While a decrease in total CD4 was observed in lysates of cells expressing Nef, the levels of p56lck were not significantly affected. Pulse-chase experiments further revealed a decrease in the half-life of CD4 in Nef-expressing cells. These results show that the decrease in surface CD4 expression induced by Nef is mediated at least in part by a decrease in the half-life of CD4 protein. These results also indicate that a large portion of p56lck is free of CD4 in T cells expressing Nef, which could have a significant effect on T-cell function.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

S J Anderson, and M Lenburg, and N R Landau, and J V Garcia
June 1993, Proceedings of the National Academy of Sciences of the United States of America,
S J Anderson, and M Lenburg, and N R Landau, and J V Garcia
March 2001, Journal of virology,
S J Anderson, and M Lenburg, and N R Landau, and J V Garcia
September 1996, FEBS letters,
S J Anderson, and M Lenburg, and N R Landau, and J V Garcia
August 1994, Journal of virology,
S J Anderson, and M Lenburg, and N R Landau, and J V Garcia
April 2001, Journal of virology,
S J Anderson, and M Lenburg, and N R Landau, and J V Garcia
October 1998, The Journal of general virology,
S J Anderson, and M Lenburg, and N R Landau, and J V Garcia
October 2008, Journal of virology,
Copied contents to your clipboard!