In vivo-in vitro correlation of myelotoxicity of 9-methoxypyrazoloacridine (NSC-366140, PD115934) to myeloid and erythroid hematopoietic progenitors from human, murine, and canine marrow. 1994

R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
Food and Drug Administration, Laurel, MD 20708.

BACKGROUND 9-Methoxypyrazoloacridine (PZA) is an anticancer agent that shows selectivity of action for carcinomas over leukemias. It also has nearly equal potency against cycling and quiescent or hypoxic and normoxic target cells. Phase I trials of PZA in humans are nearing completion. OBJECTIVE This study was conducted to determine (a) if PZA is directly inhibitory to hematopoietic cells and, if it is, to characterize the inhibition pharmacodynamically, (b) whether species-specific differences in direct toxicity could explain differences in myelosuppression in mice, dogs, and humans, and (c) whether in vitro data correlate with in vivo myelosuppression data. METHODS In vitro clonogenic assays of hematopoietic progenitors of myeloid and erythroid lineages from human, canine, and murine femoral marrow were used to measure the direct toxicity of PZA. Results from these assays were compared on an area-under-the-curve (AUC) basis to clinical myelosuppression data. RESULTS On the basis of maximum tolerated concentrations, canine hematopoietic progenitors are most susceptible to PZA, followed by human and then murine progenitors. We found no difference in susceptibility to PZA toxicity between the human progenitors of myeloid and erythroid lineages. Both concentration and duration of exposure contribute to the in vitro toxicity of PZA. In contrast to antimetabolites, the in vitro toxicity of PZA could be minimized at a given AUC by lowering drug concentration and prolonging the period of exposure. On an AUC basis, the in vitro data are consistent with limited in vivo myelosuppression data from preclinical models and correlate with neutropenia data from a phase I trial. CONCLUSIONS PZA directly inhibits hematopoietic progenitors, an action that is responsible for the myelosuppression observed in humans. Human marrow appears able to compensate for the loss of up to 35% of its myeloid progenitors, in that peripheral neutrophil counts remain unchanged at that level of loss. Although in vivo studies show that prolonged infusion reduces myelosuppression at a given total dose in both rodent and canine models, pharmacokinetic differences make it unlikely that this approach will benefit human patients. CONCLUSIONS The in vitro data quantitatively predict the AUCs at maximum tolerated dose in preclinical models and human patients. Thus, in vitro clonogenic assays of myelotoxic agents can provide data that make both preclinical toxicology testing and clinical trial planning and interpretation more efficient and accurate.

UI MeSH Term Description Entries
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D011720 Pyrazoles Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000166 Acridines Compounds that include the structure of acridine. Acridine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy

Related Publications

R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
April 1986, Cancer treatment reports,
R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
January 1985, Progress in clinical and biological research,
R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
December 1995, American journal of hematology,
R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
January 1997, Cancer chemotherapy and pharmacology,
R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
November 1992, Investigational new drugs,
R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
November 2012, Toxicon : official journal of the International Society on Toxinology,
R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
April 1985, Journal of cellular physiology,
R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
July 1997, Journal of lipid mediators and cell signalling,
R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
December 2011, Cell stem cell,
R E Parchment, and D A Volpe, and P M LoRusso, and C L Erickson-Miller, and M J Murphy, and C K Grieshaber
April 2020, Haematologica,
Copied contents to your clipboard!