Differential toxicity of camptothecin, topotecan and 9-aminocamptothecin to human, canine, and murine myeloid progenitors (CFU-GM) in vitro. 1997

C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
Hipple Cancer Research Center, Dayton, OH 45439, USA.

OBJECTIVE 20(S)-Camptothecin (CAM), topotecan (TPT, active ingredient in Hycamtin) and 9-amino-20(S)-camptothecin (9AC) are topoisomerase I inhibitors that cause similar dose-limiting toxicities to rapidly renewing tissues, such as hematopoietic tissues, in humans, mice, and dogs. However, dose-limiting toxicity occurs at tenfold lower doses in humans than in mice. The purpose of the current study was to determine whether hematopoietic progenitors of the myeloid lineage from humans, mice, and dogs exhibit the differential sensitivity to these compounds that is evident in vivo. METHODS Drug-induced inhibition of in vitro colony formation by a myeloid progenitor in human, murine, and canine marrow colony-forming unit-granulocyte/macrophage (CFU-GM) provided the basis for interspecies comparisons at concentrations which inhibited colony formation by 50% (IC50) and 90% (IC90). RESULTS Murine IC90 values were 2.6-, 2.3-, 10-, 21-, 5.9-, and 11-fold higher than human values for CAM lactone (NSC-94600) and sodium salt (NSC-100880), TPT (NSC-609699), and racemic (NSC-629971), semisynthetic and synthetic preparations (NSC-603071) of 9AC, respectively. In contrast, canine IC90 values were the same as, or lower than, the human IC90 values for all six compounds. CONCLUSIONS The greater susceptibility of humans and dogs to the myelotoxicity of camptothecins, compared to mice, was evident in vitro at the cellular level. Differential sensitivity between murine and human myeloid progenitors explains why the curative doses of TPT and 9AC in mice with human tumor xenografts are not achievable in patients. Realizing the curative potential of these compounds in humans will require the development of therapies to increase drug tolerance of human CFU-GM at least to a level equal to that of murine CFU-GM. Because these interspecies differences are complicated by species-specific effects of plasma proteins on drug stability, not all in vitro assay conditions will yield results which can contribute to the development of such therapies.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002166 Camptothecin An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity. Camptothecine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
October 1985, Blood,
C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
January 1989, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
January 2006, Pharmacopsychiatry,
C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
August 1998, International journal of hematology,
C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
November 1989, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
January 1988, Folia haematologica (Leipzig, Germany : 1928),
C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
May 1989, Pharmacology & toxicology,
C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
February 1994, Journal of the National Cancer Institute,
C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
January 1999, Life sciences,
C L Erickson-Miller, and R D May, and J Tomaszewski, and B Osborn, and M J Murphy, and J G Page, and R E Parchment
January 1997, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!