Primary structure and functional expression of a guinea pig kappa opioid (dynorphin) receptor. 1994

G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
Mental Health Research Institute, University of Michigan, Ann Arbor 48109.

A full-length cDNA encoding the guinea pig kappa opioid (dynorphin) receptor has been isolated. The deduced protein contains 380 aa and seven hydrophobic alpha-helices characteristic of the G protein-coupled receptors. This receptor is 90% identical to the mouse and rat kappa receptors, with the greatest level of divergence in the N-terminal region. When expressed in COS-7 cells, the receptor displays high affinity and stereospecificity toward dynorphin peptides and other kappa-selective opioid ligands such as U50, 488. It does not bind the mu- and delta-selective opioid ligands. The expressed receptor is functionally coupled to G protein(s) to inhibit adenylyl cyclase and Ca2+ channels. The guinea pig kappa receptor mRNA is expressed in many brain areas, including the cerebellum, a pattern that agrees well with autoradiographic maps of classical guinea pig kappa binding sites. Species differences in the pharmacology and mRNA distribution between the cloned guinea pig and rat kappa receptors may be worthy of further examination.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
January 2000, Neuroscience,
G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
July 1982, The Journal of pharmacology and experimental therapeutics,
G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
April 1997, The Journal of pharmacology and experimental therapeutics,
G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
January 2000, DNA and cell biology,
G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
December 1997, The Journal of pharmacology and experimental therapeutics,
G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
February 1984, European journal of pharmacology,
G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
March 1995, The Journal of biological chemistry,
G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
January 2022, Handbook of experimental pharmacology,
G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
April 1988, Neuroscience letters,
G X Xie, and F Meng, and A Mansour, and R C Thompson, and M T Hoversten, and A Goldstein, and S J Watson, and H Akil
January 1983, Peptides,
Copied contents to your clipboard!