Antimalarial 4-aminoquinolines: mode of action and pharmacokinetics. 1994

E Pussard, and F Verdier
Service de Pharmacologie Clinique, Hôpital de Bicêtre, Le Kremlin Bicêtre, France.

In the last ten years, the widespread increase in Plasmodium falciparum resistance to chloroquine has prompted research into antimalarial 4-aminoquinolines, empirically used up to now. The mechanism of action of 4-aminoquinolines is characterized by the concentration of the drug in the digestive vacuole of the intraerythrocytic parasite. Various hypotheses have been advanced to explain the specificity of action on the parasite; the most recent one is the inhibition of the haem polymerase of the parasite, leading to the accumulation of soluble haem toxic for the parasite. Chloroquine-resistant parasites accumulate the drug to a lesser extent than do sensitive parasites. Recent findings have shown that chloroquine resistance can be reversed by various tricyclic drugs, which are able to restore the effective concentrations of chloroquine in the infected erythrocyte, but intrinsic mechanisms of action of these reversing agents are unknown. Four-aminoquinolines are extensively distributed in tissues and characterized by a long elimination half-life. Despite similarities in their chemical structures, these drugs show differences in their biotransformation and routes of elimination: chloroquine is partly metabolized into a monodesethylderivative and eliminated mainly by the kidney. In contrast, amodiaquine is a prodrug and amopyroquine is poorly metabolized; both drugs are excreted mainly in the bile. The understanding of the pharmacokinetics of 4-aminoquinolines has led to an improvement in empirically defined therapeutic regimens. Finally, the emergence of severe adverse-effects after prolonged prophylaxis with amodiaquine and the lack of cross resistance of Plasmodium falciparum between chloroquine and amopyroquine, have led to a proposal for the use of intramuscular amopyroquine as an alternative for the treatment of chloroquine-resistant malaria.

UI MeSH Term Description Entries
D010963 Plasmodium falciparum A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics. Plasmodium falciparums,falciparums, Plasmodium
D002738 Chloroquine The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. Aralen,Arechine,Arequin,Chingamin,Chlorochin,Chloroquine Sulfate,Chloroquine Sulphate,Khingamin,Nivaquine,Sulfate, Chloroquine,Sulphate, Chloroquine
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000634 Aminoquinolines Quinolines substituted in any position by one or more amino groups.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000962 Antimalarials Agents used in the treatment of malaria. They are usually classified on the basis of their action against plasmodia at different stages in their life cycle in the human. (From AMA, Drug Evaluations Annual, 1992, p1585) Anti-Malarial,Antimalarial,Antimalarial Agent,Antimalarial Drug,Anti-Malarials,Antimalarial Agents,Antimalarial Drugs,Agent, Antimalarial,Agents, Antimalarial,Anti Malarial,Anti Malarials,Drug, Antimalarial,Drugs, Antimalarial
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

E Pussard, and F Verdier
February 2006, Acta crystallographica. Section C, Crystal structure communications,
E Pussard, and F Verdier
January 2010, Arzneimittel-Forschung,
E Pussard, and F Verdier
July 1970, Toxicology and applied pharmacology,
E Pussard, and F Verdier
January 1978, Arzneimittel-Forschung,
E Pussard, and F Verdier
February 2005, Bioorganic & medicinal chemistry letters,
E Pussard, and F Verdier
December 2010, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!