Atonal is the proneural gene for Drosophila photoreceptors. 1994

A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
Howard Hughes Medical Institute, University of California at San Francisco 94143-0724.

The Drosophila peripheral nervous system comprises four major types of sensory element: external sense organs (such as mechano-sensory bristles), chordotonal organs (internal stretch receptors), multiple dendritic neurons, and photoreceptors. During development, the selection of neural precursors for external sense organs requires the proneural genes of the achaete-scute complex, which encode basic-helix-loop-helix transcription factors. These genes do not, however, control precursor selection for chordotonal organs or photoreceptors, raising the question of whether other proneural genes exist or a different mechanism of neurogenesis operates. Here we show that atonal (ato), originally isolated as a proneural gene for chordotonal organs, is also the proneural gene for photoreceptors. Pattern formation in the Drosophila eye involves a succession of cell fate specifications. Of the eight photoreceptors within each ommatidium of the compound eye, the photoreceptor R8 is the first to appear in the eye imaginal disc, right behind the morphogenetic furrow. The appearance of other photoreceptors (R1-7) follows in a defined sequence that is thought to arise by induction from R8 (refs 8, 9, 11, 12). We find that photoreceptor formation requires the function of atonal at the morphogenetic furrow and that atonal is specifically required for R8 selection. Formation of other photoreceptors does not directly require atonal function, but does depend on R8 selection by atonal. Thus, photoreceptors are selected by two mechanisms: R8 by a proneural mechanism, and R1-7 by local recruitment.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051792 Basic Helix-Loop-Helix Transcription Factors A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF. Basic Helix-Loop-Helix Transcription Factor,bHLH Protein,bHLH Transcription Factor,bHLH Proteins,bHLH Transcription Factors,Basic Helix Loop Helix Transcription Factor,Basic Helix Loop Helix Transcription Factors,Factor, bHLH Transcription,Protein, bHLH,Transcription Factor, bHLH,Transcription Factors, bHLH
D017956 Photoreceptor Cells, Invertebrate Specialized cells in the invertebrates that detect and transduce light. They are predominantly rhabdomeric with an array of photosensitive microvilli. Illumination depolarizes invertebrate photoreceptors by stimulating Na+ influx across the plasma membrane. Invertebrate Photoreceptors,Photoreceptors, Invertebrate,Invertebrate Photoreceptor Cells,Cell, Invertebrate Photoreceptor,Cells, Invertebrate Photoreceptor,Invertebrate Photoreceptor,Invertebrate Photoreceptor Cell,Photoreceptor Cell, Invertebrate,Photoreceptor, Invertebrate

Related Publications

A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
July 1995, Development (Cambridge, England),
A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
April 1999, Proceedings of the National Academy of Sciences of the United States of America,
A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
March 1997, Genes to cells : devoted to molecular & cellular mechanisms,
A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
July 1993, Cell,
A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
December 2000, Mechanisms of development,
A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
November 1996, Genomics,
A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
January 2008, Developmental biology,
A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
March 2000, Neuron,
A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
February 2009, PLoS biology,
A P Jarman, and E H Grell, and L Ackerman, and L Y Jan, and Y N Jan
May 2012, Genesis (New York, N.Y. : 2000),
Copied contents to your clipboard!