Bradykinin and angiotensin II: activation of protein kinase C in arterial smooth muscle. 1994

B S Dixon, and R V Sharma, and T Dickerson, and J Fortune
Department of Medicine, University of Iowa College of Medicine, Iowa City.

The effects of bradykinin (BK) and angiotensin II (ANG II) were compared in cultured rat mesenteric arterial smooth muscle cells. BK and ANG II activated a phosphoinositide-specific phospholipase C, leading to the rapid release of [3H]inositol phosphates, an increase in intracellular calcium, and formation of sn-1,2-diacylglycerol (DAG). DAG formation was biphasic with a transient peak at 5 s followed by a sustained increase from 60 to 600 s. The BK-mediated increases in inositol triphosphate and DAG were dose dependent with half-maximal increases at concentrations of 5 and 2 nM, respectively. Both hormones were found to activate protein kinase C (PKC) as assessed by phosphorylation of the 68- to 72-kDa intracellular PKC substrate myristoylated alanine-rich C kinase substrate. However, despite similar phosphorylation of this substrate, only ANG II produced a significant increase in membrane-bound PKC activity. The mechanism accounting for the inability of BK to increase membrane-bound PKC activity is unclear. Our studies excluded differential translocation of PKC to the nuclear membrane, production of an inhibitor of membrane-bound PKC activity, and expression of BK and ANG II receptors on different cells as the mechanism. Vascular smooth muscle cells were found to express at least four different PKC isozymes: alpha, delta, zeta, and a faint band for epsilon. All of the isozymes except zeta-PKC were translocated by treatment with the phorbol ester 4 beta-phorbol 12-myristate 13-acetate. However, neither ANG II nor BK produced significant translocation of any measured isozyme; therefore, we could not exclude the possibility that ANG II and BK activate different isozymes of PKC. Both hormones were found to have a similar small and inconsistent effect in stimulating [3H]thymidine incorporation. These observations demonstrate that BK and ANG II have similar biochemical effects on vascular smooth muscle cells and imply that, in selected vessels, the vasodilatory effects of BK mediated by the endothelium may be partially counterbalanced by a vasoconstrictor effect on the underlying vascular smooth muscle cells.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D010750 Phosphoproteins Phosphoprotein

Related Publications

B S Dixon, and R V Sharma, and T Dickerson, and J Fortune
March 1997, The Journal of biological chemistry,
B S Dixon, and R V Sharma, and T Dickerson, and J Fortune
October 1998, Circulation research,
B S Dixon, and R V Sharma, and T Dickerson, and J Fortune
January 1989, The Journal of biological chemistry,
B S Dixon, and R V Sharma, and T Dickerson, and J Fortune
May 1993, Journal of cardiovascular pharmacology,
B S Dixon, and R V Sharma, and T Dickerson, and J Fortune
September 1997, The Journal of physiology,
B S Dixon, and R V Sharma, and T Dickerson, and J Fortune
December 1992, Archives of biochemistry and biophysics,
B S Dixon, and R V Sharma, and T Dickerson, and J Fortune
November 2005, American journal of physiology. Cell physiology,
B S Dixon, and R V Sharma, and T Dickerson, and J Fortune
April 1994, European journal of pharmacology,
B S Dixon, and R V Sharma, and T Dickerson, and J Fortune
March 2006, European journal of pharmacology,
Copied contents to your clipboard!