Characteristics of myocytes isolated from hearts of renovascular hypertensive guinea pigs. 1994

R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
Department of Cardiac Medicine, National Heart and Lung Institute, London, United Kingdom.

A model of renovascular hypertension has been developed in the guinea pig using the Goldblatt (2-kidney, 1-clip) operation. Systolic and diastolic blood pressures were significantly increased 3 and 7 wk after the operation, but levels fell to control values at 11 wk. The two-dimensional areas of myocytes isolated from the hearts of Goldblatt-operated (GB) animals were larger than those in control cells at 3 wk (cf. 3,397 +/- 87 and 2,208 +/- 125 microns 2, P < 0.01), and the difference was maintained at 7 and 11 wk. No change in cell contraction or relaxation characteristics were seen at either 3 or 7 wk after clipping. Myocytes from the 11-wk GB group showed a significantly reduced contraction amplitude and velocity at 32 degrees C in maximally activating Ca2+ or isoproterenol concentrations (%cell shortening in Ca2+, cf. 6.8 +/- 0.4 and 10.0 +/- 0.9, P < 0.01). Concentrations eliciting 50% of maximal response for Ca2+ or isoproterenol were unchanged, as was the ratio of isoproterenol to Ca2+ effect in the same cell. Increases in time to peak contraction (TTP) and time to 50% relaxation (R50) were observed in 11-wk GB myocytes, but only at room temperature. There was no lengthening of TTP or R50 of the Ca2+ transient, nor was there any change in Ca2+ current density or inactivation kinetics in these myocytes.

UI MeSH Term Description Entries
D006978 Hypertension, Renovascular Hypertension due to RENAL ARTERY OBSTRUCTION or compression. Hypertension, Goldblatt,Goldblatt Syndrome,Goldblatt Hypertension,Renovascular Hypertension,Syndrome, Goldblatt
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic

Related Publications

R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
July 1989, Journal of molecular and cellular cardiology,
R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
August 1994, Shock (Augusta, Ga.),
R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
January 1988, The Journal of physiology,
R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
January 1980, Scanning electron microscopy,
R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
January 1992, Annals of the New York Academy of Sciences,
R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
August 1991, Cardiovascular research,
R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
June 1999, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
September 1994, Journal of molecular and cellular cardiology,
R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
April 1992, The American journal of physiology,
R U Naqvi, and F del Monte, and P O'Gara, and S E Harding, and K T MacLeod
June 1996, The American journal of physiology,
Copied contents to your clipboard!