Propagation and immortalization of human lens epithelial cells in culture. 1994

U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
Department of Ophthalmology and Visual Science, Washington University School of Medicine, St. Louis, Missouri 63110.

OBJECTIVE To establish primary and immortalized cell cultures of human lens epithelial cells for a model system investigating human lens epithelial physiology and cataract. METHODS Human lens epithelial cells in culture were grown by isolating epithelium fragments from infant human lenses from patients who underwent treatment for retinopathy of prematurity and by allowing epithelial cells to grow from explants. To immortalize cells, the cultures were infected with an adenovirus 12-SV40 virus (Ad12-SV40). RESULTS The primary cells from infant eyes proliferated for three passages before senescence was observed. However, the immortalized cells remained proliferative and retained the morphology of the primary cells. Immunohistochemical analysis demonstrated that these immortalized cells were SV40 large T antigen-positive and ceased to produce infectious virus after a few passages. Immortalized cells passaged to population doubling levels of 76 continued to form confluent cultures within 7 days of subculture. Analysis of proteins by SDS-PAGE and immunoblotting showed that immortalized cells produce a protein with molecular weight of about 25 kD, which reacted with an antibody to beta H-crystallin. CONCLUSIONS This report constitutes the first successful immortalization of human lens epithelial cells. Currently, two cell lines have been created (B-3 and B-4) and passaged to population doubling levels of 76 and 52, respectively. These cells may provide an important human cell line specific to in vivo human lens epithelial cell physiology and would be of interest in establishing a human model to study lens cell differentiation and the etiology of cataract. These cells may also provide a constant and reproducible source of lens epithelial cells for eye-related toxicology studies and to assay inhibitory drugs for the prevention of cataracts and posterior capsular opacification observed after cataract extraction.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003459 Crystallins A heterogeneous family of water-soluble structural proteins found in cells of the vertebrate lens. The presence of these proteins accounts for the transparency of the lens. The family is composed of four major groups, alpha, beta, gamma, and delta, and several minor groups, which are classed on the basis of size, charge, immunological properties, and vertebrate source. Alpha, beta, and delta crystallins occur in avian and reptilian lenses, while alpha, beta, and gamma crystallins occur in all other lenses. Lens Proteins,Crystallin,Eye Lens Protein,Lens Protein, Eye,Protein, Eye Lens,Proteins, Lens
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
August 2010, Investigative ophthalmology & visual science,
U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
September 2012, Nature protocols,
U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
December 1997, Yan ke xue bao = Eye science,
U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
February 1991, Experimental eye research,
U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
January 2005, Methods in molecular medicine,
U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
January 2013, Methods in molecular biology (Clifton, N.J.),
U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
October 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
January 1993, Documenta ophthalmologica. Advances in ophthalmology,
U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
December 1988, Experimental eye research,
U P Andley, and J S Rhim, and L T Chylack, and T P Fleming
July 2008, Molecular vision,
Copied contents to your clipboard!