Proteoglycans and the modulation of cell adhesion by steric exclusion. 1993

J E Morris
Department of Zoology, Oregon State University, Corvallis 97331.

The hypothesis that cell aggregation may be driven by linear polymers in the matrix, particularly glycosaminoglycans, is revisited in light of more recent evidence. A model is proposed that extends the concept of steric exclusion to include a role in determining the directionality of cell migration and neurite extension. Recent literature is reviewed to support the conclusion that in living tissues the theoretical conditions for driving aggregation and migration by steric exclusion are met. The ability of a linear polymer to exclude cells is a function of its viscosity, which is optimum with glycosaminoglycans similar to chondroitin sulfate. It is ineffective with low viscosity glycosaminoglycans such as most heparin or heparan sulfate. Hyaluronic acid, a massive polymer, excludes cells poorly when present as an open matrix gel but forms an effective exclusion barrier when attached to the cell surface. According to a model for steric exclusion in organogenesis, when cells have a glycocalyx of linear polymer, they should disperse and migrate down a viscosity gradient of excluding matrix polymer; when they shed or internalize their surface coat in the continued presence of matrix, they should be excluded into a smaller volume and thus stimulated to aggregate.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J E Morris
March 1993, Journal of neuroscience research,
J E Morris
October 1992, Biulleten' eksperimental'noi biologii i meditsiny,
J E Morris
June 1994, Biulleten' eksperimental'noi biologii i meditsiny,
J E Morris
January 1991, Zeitschrift fur Naturforschung. C, Journal of biosciences,
J E Morris
November 1998, Matrix biology : journal of the International Society for Matrix Biology,
J E Morris
May 2017, The Biochemical journal,
J E Morris
November 1980, Cell biology international reports,
J E Morris
October 1992, Current opinion in cell biology,
Copied contents to your clipboard!