Oligodendrocyte proteoglycans: modulation by cell-substratum adhesion. 1993

S H Yim, and J E Sherin, and S Szuchet
Myelin Section, NINDS, National Institute of Health, Rockville, Maryland.

The signals that trigger the cytodifferentiation of oligodendrocytes (OLGs) are largely unknown. Using as a model system cultures of pure OLGs, we have shown that adhesion to a substratum initiates myelinogenesis (Yim SH, Szuchet S, Polak PE, J Biol Chem 261:11808-11815, 1986). It was of interest to investigate whether components such as proteoglycans (PGs) play any role in the biology of OLGs as it pertains to myelinogenesis. We set out to determine first, whether OLGs carry PGs; second, the nature of the association of these components with OLG plasma membrane; and third, if and how these PGs are modulated by OLG-substratum interaction. We compared the expression and characteristics of PGs extracted with different solvents from nonattached (B3.f) and attached (B3.fA) OLGs. B3.f and B3.fA OLG cultures were labeled with carrier-free 35SO4(2-) in serum-free medium. After removing excess label, OLGs were treated with heparin to extract susceptible components. Pellets were then exposed to 1% Triton X-100 plus 0.1 M NaCl and subsequently to 4 M guanidine-HCl plus 0.5 M NaCl. Solutions containing extracted material were characterized by size-exclusion chromatography, SDS-PAGE, and enzymatic degradation. Herein we report that (1) OLGs display [35S]PGs on their surface within 24 hr of substratum adhesion, and (2) these PGs can be operationally classified as peripheral and integral. We further show that the peripheral PGs are of high and intermediate size as assessed by size-exclusion chromatography and are segregated within the plasma membrane in such a way that the species with intermediate mass are extracted while OLGs remain adhered, whereas the high-molecular-weight species are only extracted after OLGs have been detached. Heparin also dislodges a number of sulfated proteins/Gps. Only a single class--high molecular weight--of integral PGs was identified; this PG requires guanidine-HCl for extraction. All PGs belong to the heparan sulfate class as evidenced by their degradation with heparitinase and their lack of susceptibility to chondroitinase ABC. The common theme of our findings is that these macromolecules have basal levels of expression in the nonadhered OLGs but undergo an adhesion-induced enhancement in their syntheses. We postulate that these PGs (1) play a role in OLG-substratum adhesion and hence myelinogenesis, and (2) may be determinants in establishing OLG polarity. Such polarization is the first overt sign of OLG functional differentiation and occurs prior to any morphological differentiation, e.g., extension of processes does not occur until 48 hr later when the plasma membrane is already polarized.

UI MeSH Term Description Entries
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D011133 Polysaccharide-Lyases A group of carbon-oxygen lyases. These enzymes catalyze the breakage of a carbon-oxygen bond in polysaccharides leading to an unsaturated product and the elimination of an alcohol. EC 4.2.2. Polysaccharide Lyase,Polysaccharide-Lyase,Lyase, Polysaccharide,Polysaccharide Lyases
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002808 Chondroitin Lyases Enzymes which catalyze the elimination of delta-4,5-D-glucuronate residues from polysaccharides containing 1,4-beta-hexosaminyl and 1,3-beta-D-glucuronosyl or 1,3-alpha-L-iduronosyl linkages thereby bringing about depolymerization. EC 4.2.2.4 acts on chondroitin sulfate A and C as well as on dermatan sulfate and slowly on hyaluronate. EC 4.2.2.5 acts on chondroitin sulfate A and C. Chondroitin AC Lyase,Chondroitin B Lyase,Chondroitin Eliminase,Chondroitin Sulfate Lyase,Chondroitinase-AC II,Chondroitinase AC II,Eliminase, Chondroitin,Lyase, Chondroitin AC,Lyase, Chondroitin B,Lyase, Chondroitin Sulfate,Lyases, Chondroitin,Sulfate Lyase, Chondroitin
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography

Related Publications

S H Yim, and J E Sherin, and S Szuchet
January 1979, Journal of supramolecular structure,
S H Yim, and J E Sherin, and S Szuchet
January 1988, Annals of the New York Academy of Sciences,
S H Yim, and J E Sherin, and S Szuchet
April 1993, Developmental dynamics : an official publication of the American Association of Anatomists,
S H Yim, and J E Sherin, and S Szuchet
May 1994, Journal of cell science,
S H Yim, and J E Sherin, and S Szuchet
October 1997, Planta,
S H Yim, and J E Sherin, and S Szuchet
April 1983, Biochemistry,
S H Yim, and J E Sherin, and S Szuchet
February 1988, Proceedings of the National Academy of Sciences of the United States of America,
S H Yim, and J E Sherin, and S Szuchet
May 1992, Journal of neuroscience research,
S H Yim, and J E Sherin, and S Szuchet
December 1996, Molecular and cellular biochemistry,
Copied contents to your clipboard!