Sequence characterization of 5S ribosomal RNA from eight gram positive procaryotes. 1976

C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox

The available comparative data on procaryotic 5S rRNA was extended through sequencing studies of eight gram positive procaryotes. Complete nucleotide sequences were presented for 5S rRNA from Bacillus subtilis, B. firmus, B. pasteurii, B. brevis, Lactobacillus brevis and Streptococcus faecalis. In addition, 5S rRNA oligonucleotide catalogs and partial sequence data were provided for B. cereus and Sporosarcina ureae. These sequences and catalogs were discussed in terms of known features of procaryotic 5S rRNA architecture.

UI MeSH Term Description Entries
D007778 Lactobacillus A genus of gram-positive, microaerophilic, rod-shaped bacteria occurring widely in nature. Its species are also part of the many normal flora of the mouth, intestinal tract, and vagina of many mammals, including humans. Lactobacillus species are homofermentative and ferment a broad spectrum of carbohydrates often host-adapted but do not ferment PENTOSES. Most members were previously assigned to the Lactobacillus delbrueckii group. Pathogenicity from this genus is rare.
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D006163 Ribonuclease T1 An enzyme catalyzing the endonucleolytic cleavage of RNA at the 3'-position of a guanylate residue. EC 3.1.27.3. Guanyloribonuclease,RNase T1,Ribonuclease N1,Aspergillus oryzae Ribonuclease,Guanyl-Specific RNase,RNase Apl,RNase F1,RNase Pch 1,RNase ST,Ribonuclease F1,Ribonuclease F2,Ribonuclease ST,Ribonuclease T-1,T 1 RNase,Guanyl Specific RNase,RNase, Guanyl-Specific,RNase, T 1,Ribonuclease T 1,Ribonuclease, Aspergillus oryzae
D001407 Bacillus A genus of BACILLACEAE that are spore-forming, rod-shaped cells. Most species are saprophytic soil forms with only a few species being pathogenic. Bacillus bacterium
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox
August 1967, Nature,
C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox
January 1987, Nucleic acids research,
C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox
January 1996, Biochimie,
C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox
November 1980, Nucleic acids research,
C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox
May 1981, Journal of biochemistry,
C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox
January 1982, Journal of molecular evolution,
C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox
March 1991, Nucleic acids research,
C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox
January 1974, Journal of molecular evolution,
C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox
June 1975, Journal of molecular evolution,
C R Woese, and K R Luehrsen, and C D Pribula, and G E Fox
June 1981, Nucleic acids research,
Copied contents to your clipboard!