Gene rearrangements and T-cell lymphomas. 1993

M H Terhune, and K D Cooper
Department of Dermatology, University of Michigan School of Medicine, Ann Arbor.

BACKGROUND Cutaneous T-cell lymphomas comprise a broad spectrum of neoplasia ranging from indolent to highly aggressive types. To determine subset lineage and malignant vs benign nature, morphologic analysis, immunophenotyping, and flow cytometry have been used. However, given the shortcomings of these methods, molecular genetic techniques, which take particular advantage of the clonal nature of malignancy, are now being applied to better characterize and diagnose these lymphomas. RESULTS Each antigen-specific T cell and its clonal progeny has a unique rearrangement of its T-cell receptor gene such that it can recognize very specific antigenic epitopes. By visualizing these particular T-cell receptor gene rearrangements, Southern hybridization techniques and polymerase chain reaction amplification can detect clonal populations of T cells in the skin, blood, and lymph nodes of patients with T-cell leukemias and lymphomas. Clonal T-cell populations have also been found in cases of benign disorders such as lymphomatoid papulosis and pityriasis lichenoides et varioliformis acuta. Although these disorders usually have a benign outcome, they may represent dysplastic clonal lymphoid expansions with a high incidence of spontaneous regression. CONCLUSIONS Molecular genetic techniques have added to our ability to diagnose, characterize, and monitor the course of T-cell lymphomas and leukemias. In addition, they may provide insight into the pathogenesis of certain benign disorders.

UI MeSH Term Description Entries
D008967 Molecular Biology A discipline concerned with studying biological phenomena in terms of the chemical and physical interactions of molecules. Biochemical Genetics,Biology, Molecular,Genetics, Biochemical,Genetics, Molecular,Molecular Genetics,Biochemical Genetic,Genetic, Biochemical,Genetic, Molecular,Molecular Genetic
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012878 Skin Neoplasms Tumors or cancer of the SKIN. Cancer of Skin,Skin Cancer,Cancer of the Skin,Neoplasms, Skin,Cancer, Skin,Cancers, Skin,Neoplasm, Skin,Skin Cancers,Skin Neoplasm
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D015333 Gene Rearrangement, beta-Chain T-Cell Antigen Receptor Ordered rearrangement of T-cell variable gene regions coding for the beta-chain of antigen receptors. T-Cell Antigen Receptor beta-Chain Gene Rearrangement,T-Lymphocyte Antigen Receptor beta-Chain Gene Rearrangement,Gene Rearrangement, beta-Chain T Cell Antigen Receptor,T Cell beta-Chain Gene Rearrangement,T Lymphocyte beta-Chain Gene Rearrangement,Gene Rearrangement, beta Chain T Cell Antigen Receptor,T Cell Antigen Receptor beta Chain Gene Rearrangement,T Cell beta Chain Gene Rearrangement,T Lymphocyte Antigen Receptor beta Chain Gene Rearrangement,T Lymphocyte beta Chain Gene Rearrangement
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

M H Terhune, and K D Cooper
August 1985, The New England journal of medicine,
M H Terhune, and K D Cooper
September 1985, The EMBO journal,
M H Terhune, and K D Cooper
January 1993, Cancer treatment and research,
M H Terhune, and K D Cooper
January 1994, Annals of clinical and laboratory science,
M H Terhune, and K D Cooper
April 1990, International journal of cancer,
Copied contents to your clipboard!