The 1.7 A refined X-ray structure of the periplasmic glucose/galactose receptor from Salmonella typhimurium. 1993

J Y Zou, and M M Flocco, and S L Mowbray
Department of Molecular Biology, Uppsala University, Sweden.

The X-ray structure of the periplasmic glucose/galactose receptor (binding protein) of Salmonella typhimurium (GBP-S) has been refined at 1.7 A resolution with an R-factor of 19.0%. The model contains all 309 residues of the amino acid sequence, 153 water molecules, a calcium ion and beta-D-galactose. The protein consists of two very similar structural domains, each of which is composed a core of parallel beta-sheet flanked on both sides by alpha-helices. Three short stretches of amino acid chain (from symmetrically related portions of the structure) link the domains, and presumably act as a hinge to allow their relative movement in functionally important conformational changes. Galactose is bound between the domains, interacting with a number of side-chains from the loops lining the binding cleft. A combination of hydrogen bonding, hydrophobic and steric effects give rise to tight binding (dissociation constant 0.2 microM) and high specificity. Of nine hydrogen bonding groups, three are aspartate, three asparagine, one histidine (unprotonated), one arginine and one water, contributing 13 hydrogen bonds in total. Additional residues pack against (primarily) non-polar faces of the sugar molecule. The precise arrangement of the hydrogen bonding and hydrophobic residues results in an enclosed binding site with a shape that is a composite of those of the allowed sugar molecules. It is presumed that ligands bind to a more open form of the receptor that then closes by rotation in the hinge. Comparison with the GBP-S structure solved earlier in complex with glucose shows no significant changes, even for the aspartate residue most directly involved with the different sugars. Comparison with the galactose/glucose receptor of Escherichia coli indicates that these two proteins are very similar in overall structure, with the main difference being a 2 to 3 degrees rotation in the hinge. This difference appears to be the result of different crystal packing for the two proteins; it is likely that both conformations are normally found in solution.

UI MeSH Term Description Entries
D008628 Mercury A silver metallic element that exists as a liquid at room temperature. It has the atomic symbol Hg (from hydrargyrum, liquid silver), atomic number 80, and atomic weight 200.59. Mercury is used in many industrial applications and its salts have been employed therapeutically as purgatives, antisyphilitics, disinfectants, and astringents. It can be absorbed through the skin and mucous membranes which leads to MERCURY POISONING. Because of its toxicity, the clinical use of mercury and mercurials is diminishing.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

J Y Zou, and M M Flocco, and S L Mowbray
January 1990, Receptor,
J Y Zou, and M M Flocco, and S L Mowbray
March 1994, The Journal of biological chemistry,
J Y Zou, and M M Flocco, and S L Mowbray
July 1983, The Journal of biological chemistry,
J Y Zou, and M M Flocco, and S L Mowbray
May 1992, Journal of molecular biology,
J Y Zou, and M M Flocco, and S L Mowbray
April 1981, Journal of molecular biology,
J Y Zou, and M M Flocco, and S L Mowbray
May 1994, Archives of biochemistry and biophysics,
J Y Zou, and M M Flocco, and S L Mowbray
June 1989, Journal of molecular biology,
J Y Zou, and M M Flocco, and S L Mowbray
September 2009, Journal of structural and functional genomics,
J Y Zou, and M M Flocco, and S L Mowbray
December 2009, Acta crystallographica. Section F, Structural biology and crystallization communications,
Copied contents to your clipboard!