Human immunodeficiency virus type 2 (HIV-2) trans-activator (Tat): functional domains and the search for trans-dominant negative mutants. 1993

S K Arya
Laboratory of Tumor Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

Human immunodeficiency virus type 2 (HIV-2) trans-activator (Tat) is an important trans-regulator of viral gene expression. It differs from the related HIV-1 Tat in certain aspects of its structure and function. HIV-2 Tat is composed of 130 amino acids versus 86 amino acids for HIV-1 Tat. Apart from certain conserved regions, there is little homology between the two Tats. They also differ in their ability to trans-activate HIV-2 and HIV-1 long terminal repeat (LTR)-directed gene expression. As an aid to understanding its mechanism of action, the functional domains important for HIV-2 Tat trans-activation of HIV-2 and HIV-1 LTR-directed gene expression were investigated. Like HIV-1 Tat, HIV-2 Tat contains conserved cysteine- and arginine-rich domains important for its function. However, HIV-2 Tat differs from HIV-1 Tat in that about 20% of the HIV-2 Tat at the amino terminus was not essential for its trans-activation function while HIV-1 Tat amino terminus is reportedly a part of its activation domain. Similarly, about 30% of the protein at the carboxy terminus of HIV-2 Tat was not essential. A domain critical for HIV-2 Tat-mediated trans-activation was located just upstream of the cysteine-rich domain. This segment is predicted to adopt an alpha-helical conformation and also contains acidic amino acid residues; thus, it may resemble amphipathic helix-type activation domains found in some transcriptional factors. A region with predicted hydrophobic alpha-helical character located between the cysteine- and arginine-rich domains was also important for HIV-2 Tat function. HIV-2 Tat mutants that were analogs of HIV-1 Tat trans-dominant negative mutants did not display such a phenotype.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human

Related Publications

Copied contents to your clipboard!