Structural characterization of the trypsinized estrogen receptor. 1993

M Fritsch, and I Anderson, and J Gorski
Department of Biochemistry, University of Wisconsin-Madison 53706-1569.

Structural differences between the unoccupied and ligand-occupied rat uterine estrogen receptors (ERs) were investigated using partial proteolysis followed by immunoblotting, affinity labeling, and gel filtration chromatography. Trypsin digestion of the unoccupied ER at 4 degrees C resulted in retention of 70-80% of high-affinity [3H]estradiol binding. Only two fragments of the rat ER were detected after prolonged trypsin treatment of the unoccupied ER followed by affinity labeling with [3H]tamoxifen aziridine. One fragment represents the intact steroid binding domain (28 kDa), and the other fragment is about 10 kDa. The small 10-kDa fragment of the ER detected by denaturing gel electrophoresis is shown to be held in a large oligomeric complex in solution using gel filtration chromatography. This oligomeric complex probably represents the steroid binding domain, which has its tertiary structure maintained predominantly by noncovalent interactions between the trypsin-generated fragments. The estrogen, anti-estrogen, and unoccupied trypsinized ERs all result in similar patterns of fragments after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and detection by immunoblotting. Although no new trypsin cleavage sites were exposed, the sensitivity of the available trypsin sites was altered by heating the ER and, to a lesser extent, by hormone treatment. Gel filtration chromatography of the trypsinized estradiol- and 4-hydroxytamoxifen-occupied ERs demonstrates similar, diffuse peaks centered at about the correct size for the intact steroid binding domain (28 kDa), whereas the trypsinized unoccupied ER results in a sharp, discrete peak centered at about 80 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

M Fritsch, and I Anderson, and J Gorski
May 2007, Breast cancer research and treatment,
M Fritsch, and I Anderson, and J Gorski
June 1995, European journal of biochemistry,
M Fritsch, and I Anderson, and J Gorski
January 1986, Cold Spring Harbor symposia on quantitative biology,
M Fritsch, and I Anderson, and J Gorski
March 2005, Oncogene,
M Fritsch, and I Anderson, and J Gorski
August 2008, Mini reviews in medicinal chemistry,
M Fritsch, and I Anderson, and J Gorski
January 1990, Biochemical and biophysical research communications,
M Fritsch, and I Anderson, and J Gorski
October 1987, Molecular endocrinology (Baltimore, Md.),
M Fritsch, and I Anderson, and J Gorski
January 1987, Molecular endocrinology (Baltimore, Md.),
M Fritsch, and I Anderson, and J Gorski
May 2002, Nature structural biology,
Copied contents to your clipboard!