The catalysis of heme degradation by purified NADPH-cytochrome C reductase in the absence of other microsomal proteins. 1976

B S Masters, and B A Schacter

The report by Schacter et al. (J Biol Chem 247: 3601, 1972) that an antibody to NADPH-cytochrome c oxidoreductase inhibited NADPH-cytochrome c reductase and heme oxygenase activities in rat and pig liver and spleen microsomes demonstrated the role of this flavoprotein in microsomal heme oxygenation. Recent studies from other laboratories (Yoshida et al., J Biochem 75, 1187: 1974 and Bissell et al., Fed Proc 33: 1246, 1974) have strongly suggested that cytochrome P-450 is not involved in heme oxygenation. The availability of a homogeneous preparation of NADPH-cytochrome c reductase prompted us to test heme oxygenase activity in a system devoid of hemoprotein contamination. NADPH-cytochrome c reductase catalyzed biliverdin formation at a rate of 8.26 +/- 0.5 SEM nmole min-1mg-1 in the absence of biliverdin reductase. The rate of bilirubin formation in the presence of biliverdin reductase was less than 10% of the rate of biliverdin formation, suggesting that mixture of biliverdin isomers may be produced. Biliverdin production was potently (70--80%) inhibited by catalase, but was unaffected by superoxide dismutase. Epinephrine also inhibited heme oxygenation, presumably by utilizing O2. required for the formation of H2O2 by the reductase. By extrapolation, the NADPH oxidase activity due to NADPH-cytochrome c reductase can account for heme degradation occurring in microsomes. However, the specificity of ring scission at the IXalpha position must be due to another microsomal protein, perhaps the heme oxygenase of Yoshida et al., and not cytochrome P-450.

UI MeSH Term Description Entries
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D003579 Cytochrome Reductases Reductases, Cytochrome
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B S Masters, and B A Schacter
December 1974, Archives of biochemistry and biophysics,
B S Masters, and B A Schacter
July 1977, The Journal of antibiotics,
B S Masters, and B A Schacter
December 1972, Archives of biochemistry and biophysics,
B S Masters, and B A Schacter
September 1975, Archives of biochemistry and biophysics,
Copied contents to your clipboard!