Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb. 1983

K Mori, and K Kishi, and H Ojima

To determine the dendritic fields, mitral, displaced mitral, middle tufted, and granule cells in the rabbit olfactory bulb were stained by intracellular injection of HRP. The secondary dendrites of mitral cells were distributed mostly in the inner half of the external plexiform layer (EPL). Those of displaced mitral cells extended mainly into the middle and superficial sublayers in the EPL. The secondary dendrites of middle tufted cells were distributed mostly in the superficial portion of the EPL. Mitral cells extended their secondary dendrites in virtually all directions within a plane tangential to the mitral cell layer (MCL) and thus had a disklike projection field with a radius of about 850 microns. Displaced mitral cells had similar dendritic projection fields in the tangential plane but with somewhat distorted shapes. The secondary dendrites of middle tufted cells had a tendency to extend in particular directions. From the projection pattern of the gemmules on the peripheral processes, granule cells were classified into three types. Type I granule cells had gemmules both in the superficial and in the deep sublayers of the EPL. The peripheral processes of Type II granule cells were confined to the deep half of the EPL. The gemmules of Type III granule cells ere distributed in the superficial half of the EPL. The differing dendritic ramification among mitral, displaced mitral, and middle tufted cells suggests the separation of the dendrodendritic synaptic interactions with granule cells in different sublayers in the EPL. It also suggests a functional separation of the sublayers of the EPL.

UI MeSH Term Description Entries
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D009833 Olfactory Pathways Set of nerve fibers conducting impulses from olfactory receptors to the cerebral cortex. It includes the OLFACTORY NERVE; OLFACTORY BULB; OLFACTORY TRACT; OLFACTORY TUBERCLE; ANTERIOR PERFORATED SUBSTANCE; and OLFACTORY CORTEX. Olfactory Pathway,Pathway, Olfactory,Pathways, Olfactory
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

K Mori, and K Kishi, and H Ojima
June 1974, Electroencephalography and clinical neurophysiology,
K Mori, and K Kishi, and H Ojima
September 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Mori, and K Kishi, and H Ojima
January 1989, Journal of electron microscopy,
K Mori, and K Kishi, and H Ojima
May 1997, Neuroreport,
K Mori, and K Kishi, and H Ojima
November 1993, Journal of neurophysiology,
K Mori, and K Kishi, and H Ojima
December 1992, Journal of neurophysiology,
K Mori, and K Kishi, and H Ojima
July 1997, Brain research,
K Mori, and K Kishi, and H Ojima
April 2021, Acta physiologica (Oxford, England),
Copied contents to your clipboard!