Development of the dendritic fields of layer 3 pyramidal cells in the kitten's visual cortex. 1994

N Zec, and S B Tieman
Department of Biological Sciences, State University of New York, Albany 12222.

The cat's visual cortex is immature at birth and undergoes extensive postnatal development. For example, cells of layers 2 and 3 do not complete migration until about 3 weeks after birth. Despite the importance of dendritic growth for synaptic and functional development, there have been few studies of dendritic development in the cat's visual cortex to correlate with numerous studies of functional and synaptic development. Accordingly, we used the Golgi method to study the development of the dendrites of layer 3 pyramidal cells in the visual cortex of a series of cats ranging in age from 2 days to 3 years. Blocks of visual cortex were impregnated by the Golgi-Kopsch method and sectioned in the tangential plane. Layer 3 pyramidal cells were drawn with a camera lucida and analyzed by Sholl diagrams and vector addition. In kittens < 1 week old, these cells were very immature, with only an apical dendrite and no basal dendrites. Basal dendrites appeared during the second week. By 2 weeks, all of the basal dendrites had emerged from the soma, but they had few branches and were tipped with growth cones. By 4 weeks, they had finished branching but continued to grow in length until, by 5 weeks, they reached their adult size. Examination of the basal dendritic fields in the tangential plane revealed that their dendritic fields were more elongated at 2 weeks than at later ages, perhaps because of their smaller size. The distribution of dendritic field orientations was uniform at all ages except 3 and 4 weeks, when there was a preponderance of fields oriented in the rostrocaudal direction. Because dendritic growth and branching occurred very rapidly over a period that precedes and overlaps with the peak periods of synaptogenesis and of sensitivity to the effects of early visual experience, they may depend on afferent visual activity. The early emergence of primary dendrites, however, suggests that this process is independent of afferent activity. The coincident timing of dendritic branching with the presence of dendritic growth cones suggests that branching may occur at growth cones.

UI MeSH Term Description Entries
D008297 Male Males
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005260 Female Females
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron

Related Publications

N Zec, and S B Tieman
January 1996, Visual neuroscience,
N Zec, and S B Tieman
June 2015, Cerebral cortex (New York, N.Y. : 1991),
N Zec, and S B Tieman
March 2002, Mechanisms of ageing and development,
N Zec, and S B Tieman
July 2005, Journal of neurophysiology,
N Zec, and S B Tieman
January 1976, Cold Spring Harbor symposia on quantitative biology,
N Zec, and S B Tieman
July 1975, The Journal of physiology,
N Zec, and S B Tieman
February 2019, Neural networks : the official journal of the International Neural Network Society,
N Zec, and S B Tieman
April 1998, The European journal of neuroscience,
Copied contents to your clipboard!