Development of inhibitory mechanisms in the kitten's visual cortex. 1996

E S Green, and G C DeAngelis, and R D Freeman
Group in Neurobiology, School of Optometry, University of California, Berkeley, USA.

The objective of this study was to evaluate the maturity of three inhibitory mechanisms (end-inhibition, side-inhibition, and cross-orientation inhibition) in the striate cortex of kittens at 4 weeks postnatal. To accomplish this, we made extracellular recordings from area 17 neurons while presenting visual stimuli consisting of sinusoidal luminance gratings or composites of gratings. We then compared data from kittens relating to various characteristics of each inhibitory mechanism with data from adults. We find that end-inhibition, side-inhibition, and cross-orientation inhibition are all present in kittens, and all show signs of maturity by 4 weeks postnatal. We conclude that the development of these inhibitory mechanisms occurs relatively early, and may coincide with the development of excitatory properties.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual

Related Publications

E S Green, and G C DeAngelis, and R D Freeman
October 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E S Green, and G C DeAngelis, and R D Freeman
January 1976, Cold Spring Harbor symposia on quantitative biology,
E S Green, and G C DeAngelis, and R D Freeman
July 1975, The Journal of physiology,
E S Green, and G C DeAngelis, and R D Freeman
January 1982, Vision research,
E S Green, and G C DeAngelis, and R D Freeman
January 1994, The Journal of comparative neurology,
E S Green, and G C DeAngelis, and R D Freeman
January 1982, Experimental brain research,
E S Green, and G C DeAngelis, and R D Freeman
April 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
E S Green, and G C DeAngelis, and R D Freeman
December 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E S Green, and G C DeAngelis, and R D Freeman
March 1984, The Journal of physiology,
E S Green, and G C DeAngelis, and R D Freeman
September 1978, Archives italiennes de biologie,
Copied contents to your clipboard!