Atomic force microscopy of mammalian sperm chromatin. 1993

M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550.

We have used the atomic force microscope (AFM) to image the surfaces of intact bull, mouse and rat sperm chromatin and partially decondensed mouse sperm chromatin attached to coverglass. High resolution AFM imaging was performed in air and saline using uncoated, unfixed and unstained chromatin. Images of the surfaces of intact chromatin from all three species and of an AFM-dissected bull sperm nucleus have revealed that the DNA is organized into large nodular subunits, which vary in diameter between 50 and 100 nm. Other images of partially decondensed mouse sperm chromatin show that the nodules are arranged along thick fibers that loop out away from the nucleus upon decondensation. These fibers appear to stretch or unravel, generating narrow smooth fibers with thicknesses equivalent to a single DNA-protamine complex. High resolution AFM images of the nodular subunits suggest that they are discrete, ellipsoid-shaped DNA packaging units possibly only one level of packaging above the protamine-DNA complex.

UI MeSH Term Description Entries
D008297 Male Males
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D016252 Microscopy, Scanning Tunneling A type of scanning probe microscopy in which a very sharp conducting needle is swept just a few angstroms above the surface of a sample. The tiny tunneling current that flows between the sample and the needle tip is measured, and from this are produced three-dimensional topographs. Due to the poor electron conductivity of most biological samples, thin metal coatings are deposited on the sample. Scanning Tunneling Microscopy,Scanning Tunnelling Microscopy,Microscopies, Scanning Tunneling,Microscopies, Scanning Tunnelling,Microscopy, Scanning Tunnelling,Scanning Tunneling Microscopies,Scanning Tunnelling Microscopies,Tunneling Microscopies, Scanning,Tunneling Microscopy, Scanning,Tunnelling Microscopies, Scanning,Tunnelling Microscopy, Scanning
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
November 2007, Journal of molecular biology,
M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
January 1996, Scanning microscopy,
M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
January 2015, Methods in molecular biology (Clifton, N.J.),
M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
September 2013, Science China. Life sciences,
M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
January 2000, Archives of andrology,
M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
January 2013, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry,
M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
December 2011, Micron (Oxford, England : 1993),
M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
January 1997, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society,
M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
December 2012, Micron (Oxford, England : 1993),
M J Allen, and C Lee, and J D Lee, and G C Pogany, and M Balooch, and W J Siekhaus, and R Balhorn
January 2017, Biophysics and physicobiology,
Copied contents to your clipboard!