Beating irregularity of single pacemaker cells isolated from the rabbit sinoatrial node. 1993

R Wilders, and H J Jongsma
Department of Physiology, University of Amsterdam, The Netherlands.

Single pacemaker heart cells discharge irregularly. Data on fluctuations in interbeat interval of single pacemaker cells isolated from the rabbit sinoatrial node are presented. The coefficient of variation of the interbeat interval is quite small, approximately 2%, even though the coefficient of variation of diastolic depolarization rate is approximately 15%. It has been hypothesized that random fluctuations in interbeat interval arise from the stochastic behavior of the membrane ionic channels. To test this hypothesis, we constructed a single channel model of a single pacemaker cell isolated from the rabbit sinoatrial node, i.e., a model into which the stochastic open-close kinetics of the individual membrane ionic channels are incorporated. Single channel conductances as well as single channel open and closed lifetimes are based on experimental data from whole cell and single channel experiments that have been published in the past decade. Fluctuations in action potential parameters of the model cell are compared with those observed experimentally. It is concluded that fluctuations in interbeat interval of single sinoatrial node pacemaker cells indeed are due to the stochastic open-close kinetics of the membrane ionic channels.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012849 Sinoatrial Node The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE). Sinuatrial Node,Sinus Node,Sino-Atrial Node,Sinu-Atrial Node,Node, Sino-Atrial,Node, Sinoatrial,Node, Sinu-Atrial,Node, Sinuatrial,Node, Sinus,Nodes, Sino-Atrial,Nodes, Sinoatrial,Nodes, Sinu-Atrial,Nodes, Sinuatrial,Nodes, Sinus,Sino Atrial Node,Sino-Atrial Nodes,Sinoatrial Nodes,Sinu Atrial Node,Sinu-Atrial Nodes,Sinuatrial Nodes,Sinus Nodes
D013269 Stochastic Processes Processes that incorporate some element of randomness, used particularly to refer to a time series of random variables. Process, Stochastic,Stochastic Process,Processes, Stochastic

Related Publications

R Wilders, and H J Jongsma
June 2002, American journal of physiology. Heart and circulatory physiology,
R Wilders, and H J Jongsma
December 1992, The American journal of physiology,
R Wilders, and H J Jongsma
June 1996, The American journal of physiology,
R Wilders, and H J Jongsma
November 2007, American journal of physiology. Heart and circulatory physiology,
R Wilders, and H J Jongsma
January 2007, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
R Wilders, and H J Jongsma
February 1986, The American journal of physiology,
R Wilders, and H J Jongsma
January 1984, The Japanese journal of physiology,
R Wilders, and H J Jongsma
November 2000, Journal of applied physiology (Bethesda, Md. : 1985),
R Wilders, and H J Jongsma
November 1989, Journal of molecular and cellular cardiology,
Copied contents to your clipboard!