Characterization of a TTX-sensitive Na+ current in pacemaker cells isolated from rabbit sinoatrial node. 1996

H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
Department of Physiology, Texas Tech University Health Sciences Center, Lubbock 79430, USA.

A tetrodotoxin (TTX)-sensitive Na+ current (iNa) was investigated in single pacemaker cells after 1-4 days in culture. Ruptured-patch and perforated-patch whole cell recording techniques were used to record iNa and spontaneous electrical activity, respectively. For seven cells exposed to 20 mM Na+ (22-24 degrees C) and held at -98 mV (25% of the channels inactivated), the uncorrected maximum iNa was -39 +/- 10 pA/pF at -29.1 +/- 2.4 (SE) mV, maximum conductance was 0.9 +/- 0.2 nS/pF (1.6 +/- 0.2 mS/cm2). Half-activation and inactivation potentials were -41.4 +/- 2.0 and -90.6 +/- 2.5 mV, and the corresponding slope factors were 6.0 +/- 0.4 and 6.4 +/- 0.6 mV. Inactivation and recovery from inactivation were best fit by sums of two exponentials. During action potential clamp, a TTX-sensitive compensation current accounted for 55% of the upstroke velocity. The results suggest that iNa contributes significantly to the action potential in some nodal pacemaker cells, and the characteristics of iNa are similar to those of atrial and ventricular myocytes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012849 Sinoatrial Node The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE). Sinuatrial Node,Sinus Node,Sino-Atrial Node,Sinu-Atrial Node,Node, Sino-Atrial,Node, Sinoatrial,Node, Sinu-Atrial,Node, Sinuatrial,Node, Sinus,Nodes, Sino-Atrial,Nodes, Sinoatrial,Nodes, Sinu-Atrial,Nodes, Sinuatrial,Nodes, Sinus,Sino Atrial Node,Sino-Atrial Nodes,Sinoatrial Nodes,Sinu Atrial Node,Sinu-Atrial Nodes,Sinuatrial Nodes,Sinus Nodes
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
December 1993, Biophysical journal,
H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
November 2007, American journal of physiology. Heart and circulatory physiology,
H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
October 1999, Nihon Ika Daigaku zasshi,
H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
June 2002, American journal of physiology. Heart and circulatory physiology,
H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
April 1999, The American journal of physiology,
H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
December 1996, Journal of molecular and cellular cardiology,
H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
January 2013, BioMed research international,
H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
November 1999, The Journal of physiology,
H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
January 1998, The Journal of general physiology,
H Muramatsu, and A R Zou, and G A Berkowitz, and R D Nathan
January 2006, British journal of pharmacology,
Copied contents to your clipboard!