Protein kinase C activation and calcium mobilization decrease prolactin release from human decidual cells in early pregnancy. 1993

T Kubota, and S Kamada, and M Taguchi, and S Sakamoto, and T Aso
Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, Faculty of Medicine, Japan.

The present study was undertaken to investigate the effects of protein kinase C (PKC) activation and calcium mobilization on the release of prolactin from human decidual cells in early pregnancy. Decidua obtained from patients in early pregnancy was enzymatically dispersed and cultured with phorbol myristate acetate (PMA) and calcium ionophore A23187 in a cell culture system. Prolactin in the medium was measured by enzyme-immunoassay. PMA, a PKC activator, dose-dependently attenuated the release of prolactin from cultured decidual cells, while a PKC inhibitor, H7, significantly (P < 0.001) diminished the effect of PMA on prolactin release. PMA had no effect on cell numbers or DNA synthesis in the decidual cells during culture. It did not significantly increase the generation of inositol phosphate in decidual cells prelabelled with myo-[3H]inositol and it had no effect on intracellular calcium concentration ([Ca2+]i). Calcium ionophore A23187, a Ca(2+)-mobilizing agent, also significantly (P < 0.001) attenuated the release of prolactin and potentiated the PMA-induced suppression of prolactin release from decidual cells. These findings suggest that activation of PKC and mobilization of Ca2+ may be involved in regulating prolactin release from human decidual cells. The PMA-induced suppression of prolactin release is not triggered by phosphoinositide hydrolysis nor by the increase in [Ca2+]i in decidual cells.

UI MeSH Term Description Entries
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011261 Pregnancy Trimester, First The beginning third of a human PREGNANCY, from the first day of the last normal menstrual period (MENSTRUATION) through the completion of 14 weeks (98 days) of gestation. Early Placental Phase,Pregnancy, First Trimester,Trimester, First,Early Placental Phases,First Pregnancy Trimester,First Pregnancy Trimesters,First Trimester,First Trimester Pregnancies,First Trimester Pregnancy,First Trimesters,Phase, Early Placental,Phases, Early Placental,Placental Phase, Early,Placental Phases, Early,Pregnancies, First Trimester,Pregnancy Trimesters, First,Trimesters, First
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003656 Decidua The hormone-responsive glandular layer of ENDOMETRIUM that sloughs off at each menstrual flow (decidua menstrualis) or at the termination of pregnancy. During pregnancy, the thickest part of the decidua forms the maternal portion of the PLACENTA, thus named decidua placentalis. The thin portion of the decidua covering the rest of the embryo is the decidua capsularis. Deciduum,Deciduas
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

T Kubota, and S Kamada, and M Taguchi, and S Sakamoto, and T Aso
August 1986, The American journal of physiology,
T Kubota, and S Kamada, and M Taguchi, and S Sakamoto, and T Aso
May 1985, Molecular and cellular endocrinology,
T Kubota, and S Kamada, and M Taguchi, and S Sakamoto, and T Aso
January 1994, Biology of reproduction,
T Kubota, and S Kamada, and M Taguchi, and S Sakamoto, and T Aso
January 1991, Annals of the New York Academy of Sciences,
T Kubota, and S Kamada, and M Taguchi, and S Sakamoto, and T Aso
August 1987, Biochemical and biophysical research communications,
T Kubota, and S Kamada, and M Taguchi, and S Sakamoto, and T Aso
August 2000, Sheng li xue bao : [Acta physiologica Sinica],
T Kubota, and S Kamada, and M Taguchi, and S Sakamoto, and T Aso
June 1989, Endocrinology,
T Kubota, and S Kamada, and M Taguchi, and S Sakamoto, and T Aso
March 1987, Molecular and cellular endocrinology,
T Kubota, and S Kamada, and M Taguchi, and S Sakamoto, and T Aso
February 1999, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!