The central projections of the monkey tooth pulp afferent neurons. 1993

M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
Second Department of Oral Anatomy, Osaka University Faculty of Dentistry, Japan.

Transganglionic transport of horseradish peroxidase conjugated to wheatgerm agglutinin (HRP:WGA) entrapped in hypoallergenic polyacrylamide gel was used to study the patterns of termination of primary afferents that innervate the upper and lower tooth pulps within the trigeminal sensory nuclear complex (TSNC) of the monkey. HRP:WGA injections were also made into the lower incisors and molars, in order to examine the topographic arrangement of pulpal afferent projections. HRP-labeled pulpal afferents innervating lower and upper teeth projected ipsilaterally to the rostral subnucleus dorsalis (Vpd) and caudal subnucleus ventralis (Vpv) of the nucleus principalis (Vp); the rostrodorsomedial (Vo.r) and dorsomedial (Vo.dm) subdivisions of the nucleus oralis (Vo); the dorsomedial subdivision of the nucleus interpolaris (Vi); and laminae I-II and/or V of the nucleus caudalis (Vc) at its rostralmost level. The HRP-labeled terminals from upper and lower pulpal afferents formed a rostrocaudal column from the midlevel of Vp to the rostral tip of Vc. The label in Vp and Vo was considerably dense, but the column of terminals was interrupted at the Vpd-Vpv transition. The label in Vi and Vc was much less dense compared to that in the rostral nuclei, and the column of terminals was interrupted frequently. The representation of the upper and lower teeth in TSNC was organized in a somatotopic fashion that varied from one subdivision to the next, though their terminal zones overlapped within Vpd. The upper and lower teeth were represented in Vpv, Vo.r, Vo.dm, Vi, and Vc in a ventrodorsal, dorsoventral, lateromedial, lateromedial, and lateromedial sequence, respectively. Topographic arrangement was also noticed for the projections of pulpal afferents from the lower incisors and molars: The representations of the lower incisors and molars in Vpv, Vo.r, Vo.dm, Vi, and Vc were organized in a lateromedial, dorsoventral, ventrodorsal, ventrodorsal, and lateromedial sequence, respectively. The present results indicating sparse projections from pulpal afferents in the monkey's Vc are in good correspondence with a clinical report that trigeminal tractotomy just rostral to the obex has no significant effect on dental pain perception in patients. Furthermore, the present study indicates that projection patterns of pulpal afferents--which include the termination sites, the density of terminations between nuclei, and topographic arrangement--differ among animal species.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003782 Dental Pulp A richly vascularized and innervated connective tissue of mesodermal origin, contained in the central cavity of a tooth and delimited by the dentin, and having formative, nutritive, sensory, and protective functions. (Jablonski, Dictionary of Dentistry, 1992) Dental Pulps,Pulp, Dental,Pulps, Dental
D005154 Facial Nerve The 7th cranial nerve. The facial nerve has two parts, the larger motor root which may be called the facial nerve proper, and the smaller intermediate or sensory root. Together they provide efferent innervation to the muscles of facial expression and to the lacrimal and SALIVARY GLANDS, and convey afferent information for TASTE from the anterior two-thirds of the TONGUE and for TOUCH from the EXTERNAL EAR. Cranial Nerve VII,Marginal Mandibular Branch,Marginal Mandibular Nerve,Seventh Cranial Nerve,Nerve VII,Nerve of Wrisberg,Nervus Facialis,Nervus Intermedius,Nervus Intermedius of Wrisberg,Cranial Nerve VIIs,Cranial Nerve, Seventh,Facial Nerves,Mandibular Nerve, Marginal,Mandibular Nerves, Marginal,Marginal Mandibular Nerves,Nerve VIIs,Nerve, Facial,Nerve, Marginal Mandibular,Nerve, Seventh Cranial,Nerves, Marginal Mandibular,Nervus Faciali,Seventh Cranial Nerves,Wrisberg Nerve,Wrisberg Nervus Intermedius
D005260 Female Females
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
March 1984, The Journal of comparative neurology,
M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
June 1988, The Journal of comparative neurology,
M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
January 1989, Brain research,
M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
June 2008, Neurogastroenterology and motility,
M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
June 1978, The Journal of physiology,
M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
January 1973, The Journal of physiology,
M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
January 1987, Somatosensory research,
M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
January 1996, The Journal of comparative neurology,
M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
August 2022, eLife,
M Takemura, and Y Nagase, and A Yoshida, and K Yasuda, and S Kitamura, and Y Shigenaga, and S Matano
June 1988, Brain research,
Copied contents to your clipboard!