Hormonal stimulation of Mg2+ uptake in hepatocytes. Regulation by plasma membrane and intracellular organelles. 1993

A Romani, and C Marfella, and A Scarpa
Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.

Collagenase dispersed rat liver hepatocytes release Mg2+ when stimulated with norepinephrine or accumulate Mg2+ when stimulated with vasopressin, respectively. Mg2+ fluxes in either direction account for a net loss or gain of approximately 10% of total cell magnesium and are rapidly reversible. Both stimulated Mg2+ efflux and Mg2+ influx require physiological concentration of extracellular NaCl and Ca2+. In the absence of extracellular Na+, Mg2+ efflux, but not influx, can be observed in the presence of extracellular Cl-. Under these conditions, the efflux is inhibited by the Cl-/HCO3- exchanger inhibitor 4,4'-dinitrostilbene-2,2'-disulfonic acid. In hepatocytes, Mg2+ influx, but not efflux, is completely inhibited by thapsigargin, a specific inhibitor of the endoplasmic reticulum Ca2+ ATPase. Several lines of evidence, such as measurements of cytosolic Ca2+ or of cytosolic Ca2+ buffering, indicate that the effect of thapsigargin in inhibiting Mg2+ influx could not be explained by an increase in cytosolic Ca2+. Instead, the inhibition of hepatocyte Mg2+ influx was found to be the result of the depletion of the Ca2+ stored within the endoplasmic reticulum.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

A Romani, and C Marfella, and A Scarpa
January 1987, Society of General Physiologists series,
A Romani, and C Marfella, and A Scarpa
January 1982, Progress in liver diseases,
A Romani, and C Marfella, and A Scarpa
February 1984, Biochemical and biophysical research communications,
A Romani, and C Marfella, and A Scarpa
December 1986, Endocrinology,
A Romani, and C Marfella, and A Scarpa
March 1996, Biochimica et biophysica acta,
A Romani, and C Marfella, and A Scarpa
January 1982, Annals of the New York Academy of Sciences,
A Romani, and C Marfella, and A Scarpa
January 1982, FEBS letters,
A Romani, and C Marfella, and A Scarpa
January 1991, Pharmacology & therapeutics,
A Romani, and C Marfella, and A Scarpa
October 1994, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!