Retinal degeneration in the nervous mutant mouse. II. Electron microscopic analysis. 1993

M P White, and G M Gorrin, and R J Mullen, and M M LaVail
Department of Anatomy, University of California, San Francisco 94143-0730.

Nervous mutant mice (nr/nr) show a rapid loss of most of cerebellar Purkinje cells between the ages of 3 and 7 weeks, as well as a progressive photoreceptor cell degeneration that occurs most rapidly between postnatal days (P) 13 and 19, but with a much slower attrition during the subsequent months. We have carried out an electron microscopic analysis of nr/nr and littermate control mice at representative ages to characterize the subcellular cytopathological changes in this form of retinal degeneration, to gain insight into photoreceptor cell degeneration mechanisms by comparing these changes to those in other rodent forms of retinal degeneration, and to compare the photoreceptor changes with those of cerebellar Purkinje cells. Ultrastructural observations were limited to rod photoreceptors, since the number of cones was limited in our micrographs. The retinas of nr/nr mutant mice can be distinguished from those of normal littermates as early as postnatal day (P) 6. At this time, some of the mitochondria in rod inner segments are larger and more rounded than normal. This represents the earliest cytopathological change thus far observed in this mutant. As early as P9 and thereafter, the volume and integrity of rod outer segment membranes are reduced from normal. In the inner segments of some rod photoreceptor cells, there is a reduction in the volume or number of polyribosomes as early as P11, a reduction in rough endoplasmic reticulum as early as P13, and reduced incidence and less organized Golgi membranes as early as P16. Qualitative evaluation and quantitative stereological analysis show that the enlarged mitochondria in rod inner segments never become normal in shape or size. No changes are seen in the inner retinal layers at any age. Despite similarities with inherited retinal dystrophy in the Royal College of Surgeons rat, as noted in the original description of retinal degeneration in nr/nr mice, ultrastructural features clearly distinguish these mutants. Moreover, nr/nr mice can be distinguished from all other murine forms of retinal degeneration by electron microscopy.

UI MeSH Term Description Entries
D008297 Male Males
D008818 Mice, Neurologic Mutants Mice which carry mutant genes for neurologic defects or abnormalities. Lurcher Mice,Nervous Mice,Reeler Mice,Staggerer Mice,Weaver Mice,Chakragati Mice,Chakragati Mouse,Lurcher Mouse,Mice, Neurological Mutants,Mouse, Neurologic Mutant,Mouse, Neurological Mutant,Nervous Mouse,Neurologic Mutant Mice,Neurological Mutant Mouse,Reeler Mouse,Staggerer Mouse,Weaver Mouse,ckr Mutant Mice,Mice, Chakragati,Mice, Lurcher,Mice, Nervous,Mice, Neurologic Mutant,Mice, Reeler,Mice, Staggerer,Mice, Weaver,Mice, ckr Mutant,Mouse, Chakragati,Mouse, Lurcher,Mouse, Nervous,Mouse, Reeler,Mouse, Staggerer,Mouse, Weaver,Mutant Mice, Neurologic,Mutant Mice, ckr,Mutant Mouse, Neurologic,Neurologic Mutant Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M P White, and G M Gorrin, and R J Mullen, and M M LaVail
December 1982, The Journal of comparative neurology,
M P White, and G M Gorrin, and R J Mullen, and M M LaVail
March 2001, Experimental eye research,
M P White, and G M Gorrin, and R J Mullen, and M M LaVail
December 1982, The Journal of comparative neurology,
M P White, and G M Gorrin, and R J Mullen, and M M LaVail
January 1985, The Journal of comparative neurology,
M P White, and G M Gorrin, and R J Mullen, and M M LaVail
April 2000, Experimental eye research,
M P White, and G M Gorrin, and R J Mullen, and M M LaVail
January 1992, Izvestiia Akademii nauk. Seriia biologicheskaia,
M P White, and G M Gorrin, and R J Mullen, and M M LaVail
January 1981, Laboratory investigation; a journal of technical methods and pathology,
M P White, and G M Gorrin, and R J Mullen, and M M LaVail
April 1987, Laboratory animal science,
M P White, and G M Gorrin, and R J Mullen, and M M LaVail
January 2018, Methods in molecular biology (Clifton, N.J.),
M P White, and G M Gorrin, and R J Mullen, and M M LaVail
February 1986, Ophthalmology,
Copied contents to your clipboard!