Phosphorylase kinase, a metal ion-dependent dual specificity kinase. 1993

C J Yuan, and C Y Huang, and D J Graves
Department of Biochemistry and Biophysics, Iowa State University, Ames 50011.

Phosphorylase kinase is shown to be a dual specificity kinase. The specificity of phosphorylation is determined by divalent cation. Mg2+ causes seryl phosphorylation of phosphorylase b, but Mn2+ activates tyrosine phosphorylation of angiotensin II. In contrast to seryl phosphorylation, the tyrosine kinase activity of holoenzyme is not regulated by Ca2+. Preincubation of the holoenzyme with Ca2+, Mg2+ and ATP that causes autophosphorylation activates tyrosine kinase activity. The tyrosyl kinase activity is a property of the gamma subunit. Addition of varying amounts of Mn2+ to a truncated form of the gamma subunit of phosphorylase kinase containing MgATP inhibits serine kinase but activates tyrosine kinase activity. This result along with an oxidative reaction caused by Cu2+ and site-directed mutagenesis of the putative catalytic base inhibiting both serine and tyrosine kinase activity suggest that one active site is involved in both activities. Kinetic studies with Mn2+ and ATP show that Km for nucleotide is not changed with a seryl or tyrosyl substrate. The Vm values are different, and the value for tyrosyl phosphorylation is similar to other tyrosyl kinases. We propose two conformations for the active site; one favors seryl phosphorylation, and the second tyrosyl phosphorylation is caused by the binding of divalent cation at a second metal ion binding site.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010763 Phosphorylase b The inactive form of GLYCOGEN PHOSPHORYLASE that is converted to the active form PHOSPHORYLASE A via phosphorylation by PHOSPHORYLASE KINASE and ATP.
D010764 Phosphorylase Kinase An enzyme that catalyzes the conversion of ATP and PHOSPHORYLASE B to ADP and PHOSPHORYLASE A. Glycogen Phosphorylase Kinase,Phosphorylase b Kinase,Kinase, Glycogen Phosphorylase,Kinase, Phosphorylase,Kinase, Phosphorylase b,Phosphorylase Kinase, Glycogen,b Kinase, Phosphorylase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA

Related Publications

C J Yuan, and C Y Huang, and D J Graves
April 1984, European journal of biochemistry,
C J Yuan, and C Y Huang, and D J Graves
November 1970, European journal of biochemistry,
C J Yuan, and C Y Huang, and D J Graves
October 1983, FEBS letters,
C J Yuan, and C Y Huang, and D J Graves
January 1985, European journal of biochemistry,
C J Yuan, and C Y Huang, and D J Graves
September 2015, Insect biochemistry and molecular biology,
C J Yuan, and C Y Huang, and D J Graves
April 1978, The Journal of biological chemistry,
C J Yuan, and C Y Huang, and D J Graves
January 1976, Biochimica et biophysica acta,
C J Yuan, and C Y Huang, and D J Graves
May 1973, Biochemistry,
Copied contents to your clipboard!