Assembly of the Rieske iron-sulfur subunit of the cytochrome bc1 complex in the Escherichia coli and Rhodobacter sphaeroides membranes independent of the cytochrome b and c1 subunits. 1993

S R Van Doren, and C H Yun, and A R Crofts, and R B Gennis
Department of Physiology and Biophysics, University of Illinois, Urbana-Champaign 61801.

The Rieske iron-sulfur subunit of the cytochrome bc1 complex from Rhodobacter sphaeroides has been expressed in Escherichia coli and also in a strain of Rb. sphaeroides lacking the other subunits of the bc1 complex. PCR products encoding the full-length subunit were introduced into expression vectors to produce the subunit alone or the subunit fused behind the mature portion of the E. coli maltose binding protein (MBP), but lacking the MBP signal sequence. These proteins are both located in the cytoplasmic membrane. The unfused Rieske subunit assembles a Rieske-like iron-sulfur cluster, but with EPR characteristics which differ from the normal rhombic signal observed in the cytochrome bc1 complex. The overproduced MBP fusion protein, on the other hand, does not contain an EPR-detectable iron-sulfur cluster. Subfragments of the Rieske subunit lacking the amino-terminal hydrophobic anchor also lack the iron-sulfur cluster were expressed in E. coli. When expressed in Rb. sphaeroides in the absence of the cytochrome b and c1 subunits, the fully metalated Rieske subunit with the diagnostic gy = 1.90 EPR signal is observed in the cytoplasmic membrane. The fact that the Rieske subunit has an assembled iron-sulfur cluster and is bound to either the E. coli or the Rb. sphaeroides membrane in the absence of the other subunits of the bc1 complex demonstrates a mode of membrane attachment independent of the other components of the complex. These data are consistent with models in which the Rieske subunit is bound to the membrane via a single membrane-spanning helix located near the amino terminus.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D008320 Maltose A dextrodisaccharide from malt and starch. It is used as a sweetening agent and fermentable intermediate in brewing. (Grant & Hackh's Chemical Dictionary, 5th ed)
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme

Related Publications

S R Van Doren, and C H Yun, and A R Crofts, and R B Gennis
February 1995, The Biochemical journal,
S R Van Doren, and C H Yun, and A R Crofts, and R B Gennis
August 1994, Biochemistry,
S R Van Doren, and C H Yun, and A R Crofts, and R B Gennis
June 1999, Journal of bioenergetics and biomembranes,
S R Van Doren, and C H Yun, and A R Crofts, and R B Gennis
July 2004, Biochemistry,
S R Van Doren, and C H Yun, and A R Crofts, and R B Gennis
September 1997, The Journal of biological chemistry,
S R Van Doren, and C H Yun, and A R Crofts, and R B Gennis
November 1990, Biochimica et biophysica acta,
S R Van Doren, and C H Yun, and A R Crofts, and R B Gennis
December 2006, Biochemistry,
Copied contents to your clipboard!