Modulation by albumin of neuronal cholinergic sensitivity. 1993

D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
Department of Pharmacology, University of California, San Diego, La Jolla 92093-0636.

Bovine serum albumin greatly enhanced the cholinergic response mediated by neuronal nicotinic acetylcholine receptors in chick ciliary ganglion neurons. The enhancement exceeded 5-fold in some experiments (mean +/- standard error, 3.26 +/- 0.43-fold) and was rapid, was dose dependent, and occurred without changes in the unitary conductance or the mean open time of the acetylcholine receptor channel. This lack of detectable change in permeation or kinetic properties suggests that bovine serum albumin might increase acetylcholine responses by increasing the number of functional receptors. The enhancement appears to be specific to the albumin molecule, because activity could not be removed by detergent extraction, gel filtration, or dialysis. Acetylcholine responses in these cells are known to be enhanced by a cAMP-dependent mechanism that converts existing acetylcholine receptors from a nonfunctional to a functional state. We found that the enhancement by bovine serum albumin occurred without an increase in cAMP and that pretreatment with membrane-permeable cAMP analogs prevented any additional enhancement of the cholinergic response by bovine serum albumin. These observations are consistent with a cAMP-dependent modulation of the enhancement produced by bovine serum albumin or a convergence of the two enhancement mechanisms onto a single pathway.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005726 Ganglia, Parasympathetic Ganglia of the parasympathetic nervous system, including the ciliary, pterygopalatine, submandibular, and otic ganglia in the cranial region and intrinsic (terminal) ganglia associated with target organs in the thorax and abdomen. Parasympathetic Ganglia,Ciliary Ganglion,Ganglion, Parasympathetic,Otic Ganglia,Pterygopalatine Ganglia,Submandibular Ganglia,Ciliary Ganglions,Ganglia, Otic,Ganglia, Pterygopalatine,Ganglia, Submandibular,Ganglias, Otic,Ganglias, Pterygopalatine,Ganglias, Submandibular,Ganglion, Ciliary,Ganglions, Ciliary,Otic Ganglias,Parasympathetic Ganglion,Pterygopalatine Ganglias,Submandibular Ganglias
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf
D015124 8-Bromo Cyclic Adenosine Monophosphate A long-acting derivative of cyclic AMP. It is an activator of cyclic AMP-dependent protein kinase, but resistant to degradation by cyclic AMP phosphodiesterase. 8-Bromo-cAMP,8-Br Cyclic AMP,8-Bromo Cyclic AMP,8-Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8-Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8-Bromoadenosine 3',5'-Cyclic Monophosphate,Br Cycl AMP,8 Br Cyclic AMP,8 Bromo Cyclic AMP,8 Bromo Cyclic Adenosine Monophosphate,8 Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8 Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8 Bromo cAMP,8 Bromoadenosine 3',5' Cyclic Monophosphate,AMP, Br Cycl,Cyclic AMP, 8-Br,Cyclic AMP, 8-Bromo

Related Publications

D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
April 2003, Pflugers Archiv : European journal of physiology,
D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
May 2023, Neuroscience bulletin,
D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
October 1976, The Journal of membrane biology,
D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
December 2010, Journal of neurophysiology,
D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
July 1998, Brain research bulletin,
D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
March 2010, Journal of neurophysiology,
D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
January 1995, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
September 2007, Neurotoxicology,
D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
June 1999, Biochemical pharmacology,
D Gurantz, and J F Margiotta, and A T Harootunian, and V E Dionne
April 1996, Glycoconjugate journal,
Copied contents to your clipboard!