Cholinergic modulation of neuronal responses to cholecystokinin in anesthetized rats. 1998

H Davidowa, and K Wetzel, and G Vierig
Institute of Physiology, Faculty of Medicine (Charité), Humboldt University Berlin, Germany. davidowa@charite.hu-berlin.de

The aim of this study was to investigate whether the effects of the neuropeptide cholecystokinin on neuronal firing can be changed by acetylcholine in various structures of the brain. Single unit activity was extracellularly recorded in rats anesthetized with urethane. The neurons were located in several nuclei of the thalamus, the basal ganglia and the cerebral cortex. Neurons responding to the sulfated octapeptide of cholecystokinin (CCK-8S) were mainly activated by the drug [Wilcoxon test (Wt) p < 0.0001, n=113]. Thalamic neurons could also increase the number of burst discharges (Wt p < 0.005, n=39). Iontophoretically administered acetylcholine could reduce the activating effects of CCK-8S on firing and burst discharges. In its presence, even inhibitory effects of CCK-8S predominated (Wt p < 0.0001, n=113). The suppressive action seemed not to depend on the direction of the effect of acetylcholine itself and concerned neurons of all locations studied. Atropine could diminish or block the suppressive action of acetylcholine. In the presence of both drugs, CCK-8S mainly activated the neurons (Wt p < 0.005, n=43). Atropine itself did not significantly change the responses to CCK-8S (Wt p > 0.05). It can be concluded that cholecystokinin may reduce neuronal firing instead of increasing it during activation of the cholinergic system.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Davidowa, and K Wetzel, and G Vierig
January 2012, Brain research bulletin,
H Davidowa, and K Wetzel, and G Vierig
May 2019, Neuroscience,
H Davidowa, and K Wetzel, and G Vierig
May 1986, The American journal of physiology,
H Davidowa, and K Wetzel, and G Vierig
February 2004, Sheng li xue bao : [Acta physiologica Sinica],
H Davidowa, and K Wetzel, and G Vierig
April 2003, Pflugers Archiv : European journal of physiology,
H Davidowa, and K Wetzel, and G Vierig
May 1993, Molecular pharmacology,
H Davidowa, and K Wetzel, and G Vierig
July 1995, General pharmacology,
Copied contents to your clipboard!