Expression of a Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, in human T lymphocytes. Regulation of kinase activity by T cell receptor signaling. 1993

S H Hanissian, and M Frangakis, and M M Bland, and S Jawahar, and T A Chatila
Division of Immunology, Children's Hospital, Boston, Massachusetts.

Ca2+/calmodulin-dependent protein kinase type Gr (CaM kinase-Gr) is a Ca2+/calmodulin-dependent protein kinase which is enriched in the brain and thymus. In this study, we examined the expression of CaM kinase-Gr in human lymphocytes and the regulation of its catalytic activity by antigen receptor signaling. CaM kinase-Gr was found selectively expressed in T lymphocytes in a developmentally regulated manner. It was present at severalfold higher levels in immature thymocytes (CD3low, CD4+CD8+) relative to mature thymocytes (CD3high, CD4+CD8-/CD8+CD4-) or to circulating T lymphocytes. The kinase was preferentially expressed in CD4+ T lymphocytes, but was not detected in B lymphocytes or in monocytes. The impact of T cell antigen receptor-CD3 complex (TCR.CD3) signaling on kinase activity was examined using Jurkat human leukemic T lymphocytes as a model. Treatment of Jurkat cells with anti TCR.CD3 monoclonal antibody induced rapid autophosphorylation of the kinase on serine residues and a dramatic, autophosphorylation-dependent enhancement of both Ca2+/calmodulin-dependent and autonomous kinase activity. Enzyme autophosphorylation and activation were dependent on the influx of extracellular Ca2+ following receptor signaling but could not be induced by an influx of extra-cellular Ca2+ triggered by ionophores, indicating that additional signals delivered via TCR.CD3 contribute to the activation of CaM kinase-Gr. These findings suggest a role for CaM kinase-Gr in T lymphocyte development and activation and indicate the presence of stringent regulatory mechanisms governing the activity of this kinase in situ.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children

Related Publications

S H Hanissian, and M Frangakis, and M M Bland, and S Jawahar, and T A Chatila
September 1991, The Journal of biological chemistry,
S H Hanissian, and M Frangakis, and M M Bland, and S Jawahar, and T A Chatila
December 1995, The Journal of biological chemistry,
S H Hanissian, and M Frangakis, and M M Bland, and S Jawahar, and T A Chatila
June 1991, The Journal of biological chemistry,
S H Hanissian, and M Frangakis, and M M Bland, and S Jawahar, and T A Chatila
April 1991, Proceedings of the National Academy of Sciences of the United States of America,
S H Hanissian, and M Frangakis, and M M Bland, and S Jawahar, and T A Chatila
April 2019, Biochimica et biophysica acta. General subjects,
S H Hanissian, and M Frangakis, and M M Bland, and S Jawahar, and T A Chatila
December 1998, Biochemical and biophysical research communications,
S H Hanissian, and M Frangakis, and M M Bland, and S Jawahar, and T A Chatila
November 1997, Journal of biochemistry,
S H Hanissian, and M Frangakis, and M M Bland, and S Jawahar, and T A Chatila
August 1998, The Journal of biological chemistry,
S H Hanissian, and M Frangakis, and M M Bland, and S Jawahar, and T A Chatila
December 1988, The Journal of biological chemistry,
Copied contents to your clipboard!