Three-dimensional structure of the ternary complex between ribonuclease T1, guanosine 3',5'-bisphosphate and inorganic phosphate at 0.19 nm resolution. 1993

A Lenz, and H W Choe, and J Granzin, and U Heinemann, and W Saenger
Institut für Kristallographie, Freie Universität Berlin, Federal Republic of Germany.

The ternary complex formed between RNase T1, guanosine 3',5'-bisphosphate (3',5'-pGp) and Pi crystallizes in the cubic space group I23 with a = 8.706(1) nm. In a previous publication [Lenz, A., Heinemann, U., Maslowska, M. & Saenger, W. (1991) Acta Crystallogr. B47, 521-527], the structure of the complex (in which Pi was not located) was described at a resolution of 0.32 nm. This is now extended to 0.19 nm with newly grown, larger crystals. Refinement with restrained least-squares converged at R = 17.8% for 8027 reflections with [Fo[ > or = 1 sigma ([Fo[); the final model comprises 120 water molecules. 3',5'-pGp is bound to RNase T1 in the anti form, with guanine in the specific recognition site; the 3'-phosphate protrudes into the solvent, and the 5'-phosphate hydrogen bonds with Lys41 O and Asn43 N4. A tetrahedral anion assigned as Pi occupies the catalytic site and hydrogen bonds to the side chains of Tyr38, Glu58, Arg77 and His92. The overall polypeptide fold of RNase T1 in the cubic space group does not differ significantly from that in the orthorhombic space group P2(1)2(1)2(1) except for changes < or = 0.2 nm in loop regions 69-72 and 95-98.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D006163 Ribonuclease T1 An enzyme catalyzing the endonucleolytic cleavage of RNA at the 3'-position of a guanylate residue. EC 3.1.27.3. Guanyloribonuclease,RNase T1,Ribonuclease N1,Aspergillus oryzae Ribonuclease,Guanyl-Specific RNase,RNase Apl,RNase F1,RNase Pch 1,RNase ST,Ribonuclease F1,Ribonuclease F2,Ribonuclease ST,Ribonuclease T-1,T 1 RNase,Guanyl Specific RNase,RNase, Guanyl-Specific,RNase, T 1,Ribonuclease T 1,Ribonuclease, Aspergillus oryzae
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

A Lenz, and H W Choe, and J Granzin, and U Heinemann, and W Saenger
April 1989, Journal of molecular biology,
A Lenz, and H W Choe, and J Granzin, and U Heinemann, and W Saenger
April 1985, FEBS letters,
A Lenz, and H W Choe, and J Granzin, and U Heinemann, and W Saenger
August 1991, Acta crystallographica. Section B, Structural science,
A Lenz, and H W Choe, and J Granzin, and U Heinemann, and W Saenger
October 1988, The Journal of biological chemistry,
A Lenz, and H W Choe, and J Granzin, and U Heinemann, and W Saenger
September 1995, Acta crystallographica. Section D, Biological crystallography,
A Lenz, and H W Choe, and J Granzin, and U Heinemann, and W Saenger
June 1991, FEBS letters,
A Lenz, and H W Choe, and J Granzin, and U Heinemann, and W Saenger
January 1989, Nucleic acids symposium series,
A Lenz, and H W Choe, and J Granzin, and U Heinemann, and W Saenger
December 1988, European journal of biochemistry,
A Lenz, and H W Choe, and J Granzin, and U Heinemann, and W Saenger
September 1993, FEBS letters,
Copied contents to your clipboard!