Cultured rat mesangial cells contain smooth muscle alpha-actin not found in vivo. 1993

M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
Department of Anatomy and Cell Biology I, University of Heidelberg, Germany.

A monoclonal antibody against smooth muscle alpha-actin (SM alpha-actin) was used to study the expression of SM alpha-actin in kidney sections and mesangial cell (MC) cultures. In the tissue sections, indirect immunofluorescence revealed intense labeling of vascular smooth muscle cells and precapillary pericytes for SM alpha-actin. Glomerular cells including MC were negative, with the exception of scattered smooth muscle cells in the wall of the intraglomerular segment of the efferent arteriole. In contrast, in MC cultures 50 to 95% of the cells displayed bright fluorescence. Immunoreactivity for SM alpha-actin first appeared 3 days after explanation of glomeruli and increased until the primary culture reached subconfluence. In each subculture (1 to 10) expression of SM alpha-actin was weak on day 1 and pronounced at subconfluence. Growth arrest of subconfluent cultures for 1 to 7 days in serum-free medium did not alter the percentage of cells positive for SM alpha-actin. However, exposure of MC to serum-free medium beginning on the first day of subculture curtailed expression of SM alpha-actin. Double-labeling with antibodies against proliferating cell nuclear antigen and SM alpha-actin revealed SM alpha-actin-positive filaments in both replicating and resting cells. In summary, our results demonstrate that some process or processes associated with cell proliferation and cell growth of MC are accompanied by de novo expression of SM alpha-actin. The relevance to the contractile behavior of the difference in SM alpha-actin expression under in vitro and in vivo conditions is unknown.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005920 Glomerular Mesangium The thin membranous structure supporting the adjoining glomerular capillaries. It is composed of GLOMERULAR MESANGIAL CELLS and their EXTRACELLULAR MATRIX. Mesangium, Glomerular,Mesangial Extracellular Matrix,Extracellular Matrices, Mesangial,Extracellular Matrix, Mesangial,Glomerular Mesangiums,Matrices, Mesangial Extracellular,Matrix, Mesangial Extracellular,Mesangial Extracellular Matrices,Mesangiums, Glomerular
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
October 1998, Kidney international,
M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
June 2002, Sheng li xue bao : [Acta physiologica Sinica],
M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
April 2000, Investigative ophthalmology & visual science,
M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
July 1988, The Journal of cell biology,
M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
June 1999, Kidney international,
M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
March 1991, The Journal of clinical investigation,
M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
June 1990, Developmental biology,
M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
April 1992, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
August 2014, BMC nephrology,
M Elger, and D Drenckhahn, and R Nobiling, and P Mundel, and W Kriz
February 1996, The American journal of physiology,
Copied contents to your clipboard!