Regulation of smooth muscle alpha-actin expression and hypertrophy in cultured mesangial cells. 1998

L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
Department of Pathology, Eastern Virginia Medical School, Norfolk 23501-1980, USA.

BACKGROUND Mesangial cells during embryonic development and glomerular disease express smooth muscle alpha-actin (alpha-SMA). We were therefore surprised when cultured mesangial cells deprived of serum markedly increased expression of alpha-SMA. Serum-deprived mesangial cells appeared larger than serum-fed mesangial cells. We hypothesized that alpha-SMA expression may be more reflective of mesangial cell hypertrophy than hyperplasia. METHODS Human mesangial cells were cultured in medium alone or with fetal bovine serum, thrombin, platelet-derived growth factor-BB (PDGF-BB) and/or transforming growth factor-beta1 (TGF-beta1). Alpha-SMA expression was examined by immunofluorescence, Western blot, and Northern blot analysis. Cell size was analyzed by forward light scatter flow cytometry. RESULTS Alpha-SMA mRNA was at least tenfold more abundant after three to five days in human mesangial cells plated without serum, but beta-actin mRNA was unchanged. Serum-deprived cells contained 5.3-fold more alpha-SMA after three days and 56-fold more after five days by Western blot. Serum deprivation also increased alpha-SMA in rat and mouse mesangial cells. The effects of serum deprivation on alpha-SMA expression were reversible. Mesangial cell mitogens, thrombin or PDGF-BB, decreased alpha-SMA, but TGF-beta1 increased alpha-SMA expression and slowed mesangial cell proliferation in serum-plus medium. Flow cytometry showed that serum deprivation or TGF-beta1 treatment caused mesangial cell hypertrophy. PDGF-BB, thrombin, or thrombin receptor-activating peptide blocked hypertrophy in response to serum deprivation. CONCLUSIONS We conclude that increased alpha-SMA expression in mesangial cells reflects cellular hypertrophy rather than hyperplasia.

UI MeSH Term Description Entries
D006984 Hypertrophy General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA). Hypertrophies
D010982 Platelet-Derived Growth Factor Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication. Platelet Derived Growth Factor,Factor, Platelet-Derived Growth,Growth Factor, Platelet-Derived
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005920 Glomerular Mesangium The thin membranous structure supporting the adjoining glomerular capillaries. It is composed of GLOMERULAR MESANGIAL CELLS and their EXTRACELLULAR MATRIX. Mesangium, Glomerular,Mesangial Extracellular Matrix,Extracellular Matrices, Mesangial,Extracellular Matrix, Mesangial,Glomerular Mesangiums,Matrices, Mesangial Extracellular,Matrix, Mesangial Extracellular,Mesangial Extracellular Matrices,Mesangiums, Glomerular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077214 Becaplermin A recombinant human platelet-derived growth factor B-chain dimer used to promote WOUND HEALING by stimulating PHYSIOLOGIC ANGIOGENESIS. PDGF-BB,Platelet-Derived Growth Factor BB,Platelet-Derived Growth Factor BB, Recombinant,Recombinant Platelet-Derived Growth Factor BB,Regranex,rPDGF-BB,rhPDGF-BB,Platelet Derived Growth Factor BB,Platelet Derived Growth Factor BB, Recombinant,Recombinant Platelet Derived Growth Factor BB
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
February 1993, The American journal of pathology,
L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
April 2000, Investigative ophthalmology & visual science,
L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
June 2002, Sheng li xue bao : [Acta physiologica Sinica],
L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
May 1998, The American journal of physiology,
L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
July 1988, The Journal of cell biology,
L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
June 1999, Kidney international,
L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
April 2003, The Journal of bone and joint surgery. British volume,
L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
March 1991, The Journal of clinical investigation,
L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
January 2006, Cells, tissues, organs,
L A Stephenson, and L B Haney, and I M Hussaini, and L R Karns, and W F Glass
September 1999, Current eye research,
Copied contents to your clipboard!