Heterogeneity of the specific imidazoline binding of [3H]idazoxan in the human cerebral cortex. 1993

G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
Laboratoire de Pharmacologie cardiovasculaire et rénale, CNRS URA589, Faculté de Médecine, Université Louis Pasteur, Strasbourg, France.

The aim of the present study was to verify whether [3H]idazoxan can be considered as a highly selective ligand for imidazoline preferring receptors (IPR). In human frontal cortex membrane preparations [3H]idazoxan at a low concentration (2 nM) only labelled imidazoline sensitive, catecholamine insensitive sites. Binding was of high affinity, saturable and stereospecific. The rank order of potency of different compounds able to inhibit this binding was cirazoline > (+/-)-idazoxan > guanoxan > (-)-idazoxan > tolazoline > UK-14304 > clonidine. Amiloride, imidazol-4-acetic acid and histamine had no significant affinity for IPR labelled by [3H]idazoxan. [3H]idazoxan bound to 2 different sites (KD1 = 1 nM and KD2 = 16.4 nM). Clonidine behaved as a non competitive, non allosteric inhibitor of [3H]idazoxan binding. Both [3H]idazoxan binding sites were equally affected by clonidine. In membrane preparations obtained from the Nucleus Reticularis Lateralis region (NRL) of the brainstem, [3H]idazoxan binding was similar to that in cortical membranes, particularly with regard to specificity and kinetics. However, in the NRL region binding sites were 4-5 times more numerous than in the frontal cortex. Non linear analyses of saturation data obtained with NRL membrane preparations were compatible with both a one site and a two sites model. No significant effects of 1 mM MgCl2 alone or with 100 microM Gpp(NH)p were observed on either [3H]idazoxan binding or the competition with clonidine or rilmenidine. As in the cortical membrane, clonidine was a non competitive inhibitor of [3H]idazoxan binding to membranes from the NRL region. In conclusion, we show that when a low concentration is used, [3H]idazoxan binding to human brain involves sites almost completely insensitive to catecholamines and specific for imidazolines or related compounds. This binding involves two distinct sites. We also report that [3H]idazoxan imidazoline binding sites are not coupled with a G protein. Because of the non competitive interaction between clonidine and [3H]idazoxan for the binding sites of the latter, we are unable to conclude that the binding sites of the two drugs are identical. However, the non competitive, non allosteric interaction suggests a complex model of multiple binding sites.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007700 Kinetics The rate dynamics in chemical or physical systems.
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D004146 Dioxanes Compounds that contain the structure 1,4-dioxane.
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
September 1997, British journal of pharmacology,
G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
July 1993, British journal of pharmacology,
G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
July 1995, Annals of the New York Academy of Sciences,
G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
February 1987, Brain research,
G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
June 1999, Annals of the New York Academy of Sciences,
G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
January 1987, Journal of neural transmission,
G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
November 1994, European journal of pharmacology,
G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
May 1988, Neuroscience letters,
G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
September 1994, Naunyn-Schmiedeberg's archives of pharmacology,
G Bricca, and H Greney, and M Dontenwill-Kieffer, and J Zhang, and A Belcourt, and P Bousquet
March 1993, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!