Kinetics of biosynthesis of acetylcholine receptor and subsequent incorporation into plasma membrane of cultured chick skeletal muscle. 1977

P N Devreotes, and J M Gardner, and D M Fambrough

20% of the acetylcholine receptors in cultured chick skeletal muscle remain unbound following long-term growth of muscle in medium containing a potent, essentially irreversible receptor-blocking agent, alpha-bungarotoxin. About half the receptors which are unavailable for interaction with extracellular alpha-bungarotoxin are newly synthesized molecules which presumably are being processed and transported to the plasma membrane. When the muscle cultures are switched to a medium containing 2H, 13C, 15N-amino acids, these receptors are rapidly labeled, the fraction of labeled molecules beginning to plateau at 3 hr. Few labeled receptors appear in the plasma membrane during the first 3 hr of labeling with 2H, 13C, 15N-amino acids. After 3.5 hr of labeling, virtually all the receptors being incorporated into the plasma membrane are labeled receptors. The kinetics of labeling of the "pool" and "surface" receptors with 2H, 13C, 15N-amino acids confirm the "precursor-product" type relationship of pool and surface acetylcholine receptors. In this study, receptors synthesized in medium containing 2H, 13C, 15N-amino acids were resolved from 1H, 12C, 14N-receptors by velocity sedimentation in sucrose-deuterium oxide and sucrose-H2O gradients, and their densities were estimated from sedimentation rates in shallow gradients of various average density. Estimated densities were 1.32 g/cm3 for 1H, 12C, 14N-receptors and 1.41 g/cm3 for 2H, 13C, 15N-receptors. This density difference corresponds to 80% substitution of normal aminoacyl residues by 2H, 13C, 15N-residues in the denser receptor.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

P N Devreotes, and J M Gardner, and D M Fambrough
October 1980, Canadian journal of biochemistry,
P N Devreotes, and J M Gardner, and D M Fambrough
October 1987, The Journal of biological chemistry,
P N Devreotes, and J M Gardner, and D M Fambrough
September 1971, Biochemical and biophysical research communications,
P N Devreotes, and J M Gardner, and D M Fambrough
September 1992, The Journal of cell biology,
P N Devreotes, and J M Gardner, and D M Fambrough
June 1993, Brain research,
P N Devreotes, and J M Gardner, and D M Fambrough
April 1983, Journal of neurochemistry,
P N Devreotes, and J M Gardner, and D M Fambrough
January 1989, Biochimie,
P N Devreotes, and J M Gardner, and D M Fambrough
September 1970, Experientia,
P N Devreotes, and J M Gardner, and D M Fambrough
November 1954, Archives internationales de pharmacodynamie et de therapie,
Copied contents to your clipboard!