SWI5 instability may be necessary but is not sufficient for asymmetric HO expression in yeast. 1993

G Tebb, and T Moll, and C Dowzer, and K Nasmyth
Institute for Molecular Pathology, Vienna, Austria.

Homothallic haploid yeast cells divide to produce a mother cell that switches mating type and a daughter cell that does not. This pattern is the result of HO endonuclease transcription exclusively in mother cells, and there only transiently in late G1 as cells undergo Start. SWI5 encodes an HO transcription factor that is expressed during the S, G2, and M phases of the cell cycle. The lack of synthesis of SWI5 during G1 is essential to prevent HO transcription in daughter cells. Thus, HO must be activated by SWI5 protein synthesized in the previous cell cycle if it is to be properly regulated. SWI5 is inherited by both mother and daughter cells, and we show here that most of it is rapidly degraded during early G1. More stable mutant SWI5 proteins cause daughter cells to switch mating type, suggesting that SWI5 destruction is necessary to prevent HO expression in daughters. We show further that mother cells can still express HO when stimulated to undergo Start after arrest in early G1 for several hours. We propose that a small fraction of the SWI5 protein inherited by mother cells is extremely stable and that the crucial difference between mothers and daughters with regard to HO transcription is their differential ability to sequester SWI5 in a stable form, possibly as a component of transcription complexes on the HO promoter.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011003 Ploidies The degree of replication of the chromosome set in the karyotype. Ploidy
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

G Tebb, and T Moll, and C Dowzer, and K Nasmyth
May 2006, The Journal of investigative dermatology,
G Tebb, and T Moll, and C Dowzer, and K Nasmyth
January 2019, Epidemiologia e prevenzione,
G Tebb, and T Moll, and C Dowzer, and K Nasmyth
September 2020, Kidney international reports,
G Tebb, and T Moll, and C Dowzer, and K Nasmyth
April 2001, International journal of cancer,
G Tebb, and T Moll, and C Dowzer, and K Nasmyth
October 1994, Journal of virology,
G Tebb, and T Moll, and C Dowzer, and K Nasmyth
September 1985, Cell,
G Tebb, and T Moll, and C Dowzer, and K Nasmyth
December 2008, Injury prevention : journal of the International Society for Child and Adolescent Injury Prevention,
G Tebb, and T Moll, and C Dowzer, and K Nasmyth
November 2023, Physical review letters,
G Tebb, and T Moll, and C Dowzer, and K Nasmyth
January 2016, Virology,
G Tebb, and T Moll, and C Dowzer, and K Nasmyth
January 1990, Scandinavian journal of rheumatology. Supplement,
Copied contents to your clipboard!