The immediate ventilatory response to added inspiratory elastic and resistive loads in preterm infants. 1977

R B Boychuk, and M M Seshia, and H Rigatto

We measured the changes in tidal volume, duration of the various phases of the respiratory cycle, and peak nasal pressure during elastic and resistive loading in preterm infants. Values were calculated during the first loaded breath, when chemical drive was unchanged. Tidal volume decreased by equivalent percentages with resistive loads of 400, 900, and 2,400 cm H2O/liter/sec, and elastic loads of 330, 1,000, and 3,000 cm H2O/liter. Infinite load was also applied (nasal occlusion). Inspiratory duration (ti) was prolonged during resistive loading, as compared with elastic loading (P less than 0.05). Changes in expiratory duration (Te) were not different with both loads (P greater than 0.05). Total duration of the respiratory cycle (T), however, tended to increase in relation to control, more so with resistive loads. Peak nasal pressure was greater with resistive than with elastic loads ( less than 0.025). We suggest that (1) preterm infants, like adult subjects and other animal species, increase inspiratory duration with resistive loads as compared with elastic loads; (2) T of the first loaded breath tends to increase with progressively larger loads and, consequently, instantaneous frequency tends to decrease; and (3) if peak nasal pressure reflects tension developed by the respiratory muscles, then the latter does not offer the inhibitory information needed to terminate inspiration.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007234 Infant, Premature A human infant born before 37 weeks of GESTATION. Neonatal Prematurity,Premature Infants,Preterm Infants,Infant, Preterm,Infants, Premature,Infants, Preterm,Premature Infant,Prematurity, Neonatal,Preterm Infant
D008297 Male Males
D009666 Nose A part of the upper respiratory tract. It contains the organ of SMELL. The term includes the external nose, the nasal cavity, and the PARANASAL SINUSES. External Nose,External Noses,Nose, External,Noses,Noses, External
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D012143 Respiratory Physiological Phenomena Physiological processes and properties of the RESPIRATORY SYSTEM as a whole or of any of its parts. Respiratory Physiologic Processes,Respiratory Physiological Processes,Respiratory Physiology,Physiology, Respiratory,Pulmonary Physiological Phenomena,Pulmonary Physiological Phenomenon,Pulmonary Physiological Process,Pulmonary Physiological Processes,Respiratory Physiological Concepts,Respiratory Physiological Phenomenon,Respiratory Physiological Process,Concept, Respiratory Physiological,Concepts, Respiratory Physiological,Phenomena, Pulmonary Physiological,Phenomena, Respiratory Physiological,Phenomenas, Pulmonary Physiological,Phenomenas, Respiratory Physiological,Phenomenon, Pulmonary Physiological,Phenomenon, Respiratory Physiological,Phenomenons, Pulmonary Physiological,Phenomenons, Respiratory Physiological,Physiologic Processes, Respiratory,Physiological Concept, Respiratory,Physiological Concepts, Respiratory,Physiological Phenomena, Pulmonary,Physiological Phenomena, Respiratory,Physiological Phenomenas, Pulmonary,Physiological Phenomenas, Respiratory,Physiological Phenomenon, Pulmonary,Physiological Phenomenon, Respiratory,Physiological Phenomenons, Pulmonary,Physiological Phenomenons, Respiratory,Physiological Process, Pulmonary,Physiological Process, Respiratory,Physiological Processes, Pulmonary,Physiological Processes, Respiratory,Process, Pulmonary Physiological,Process, Respiratory Physiological,Processes, Pulmonary Physiological,Pulmonary Physiological Phenomenas,Pulmonary Physiological Phenomenons,Respiratory Physiological Concept,Respiratory Physiological Phenomenas,Respiratory Physiological Phenomenons
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000402 Airway Obstruction Any hindrance to the passage of air into and out of the lungs. Choking,Airway Obstructions,Obstruction, Airway,Obstructions, Airway

Related Publications

R B Boychuk, and M M Seshia, and H Rigatto
April 1971, Journal of applied physiology,
R B Boychuk, and M M Seshia, and H Rigatto
July 1981, Respiration physiology,
R B Boychuk, and M M Seshia, and H Rigatto
September 1973, Respiration physiology,
R B Boychuk, and M M Seshia, and H Rigatto
January 1983, The American review of respiratory disease,
R B Boychuk, and M M Seshia, and H Rigatto
June 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
R B Boychuk, and M M Seshia, and H Rigatto
April 1963, Clinical science,
R B Boychuk, and M M Seshia, and H Rigatto
March 2000, American journal of respiratory and critical care medicine,
R B Boychuk, and M M Seshia, and H Rigatto
June 1978, Clinical science and molecular medicine,
R B Boychuk, and M M Seshia, and H Rigatto
October 1973, Journal of applied physiology,
Copied contents to your clipboard!