MetJ-mediated regulation of the Salmonella typhimurium metE and metR genes occurs through a common operator region. 1993

W F Wu, and M L Urbanowski, and G V Stauffer
Department of Microbiology, University of Iowa, Iowa City 52242.

In Salmonella typhimurium the metE and metR promoters overlap and are divergently transcribed. Three tandem repeats of an 8 bp sequence defined previously as the metE operator site for MetJ-mediated repression also overlap the -35 region of the metR promoter. Starting with a metE-lacZ.metR-galK double gene fusion, site-directed mutagenesis was used to change nucleotides in each of the repeat units from the consensus sequence. Each mutation, along with the wild-type metE-lacZ.metR-galK gene fusion, was cloned into phage lambda gt2. Regulation of the metE and metR genes was examined by measuring beta-galactosidase and galactokinase levels in Escherichia coli strains lysogenized with phage carrying the wild-type and mutant fusions. Mutations in each of the 8 bp repeat units disrupt MetJ-mediated repression for both the metE-lacZ and metR-galK gene fusions, suggesting that the metE and metR genes share a common operator site for the MetJ repressor.

UI MeSH Term Description Entries
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004794 Enzyme Repression The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis. Repression, Enzyme
D005686 Galactokinase An enzyme that catalyzes reversibly the formation of galactose 1-phosphate and ADP from ATP and D-galactose. Galactosamine can also act as the acceptor. A deficiency of this enzyme results in GALACTOSEMIA. EC 2.7.1.6.
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

W F Wu, and M L Urbanowski, and G V Stauffer
September 1987, Journal of bacteriology,
W F Wu, and M L Urbanowski, and G V Stauffer
December 1988, Gene,
W F Wu, and M L Urbanowski, and G V Stauffer
December 1987, Journal of bacteriology,
W F Wu, and M L Urbanowski, and G V Stauffer
August 1989, Biochemical and biophysical research communications,
W F Wu, and M L Urbanowski, and G V Stauffer
January 1989, Proceedings of the National Academy of Sciences of the United States of America,
W F Wu, and M L Urbanowski, and G V Stauffer
September 1993, Journal of bacteriology,
W F Wu, and M L Urbanowski, and G V Stauffer
January 1992, Journal of bacteriology,
Copied contents to your clipboard!