A model of cell inactivation by alpha-particle internal emitters. 1993

J L Humm, and L M Chin
Department of Radiation Therapy, Harvard Medical School, Boston, Massachusetts 02115.

Tumor-associated antibodies labeled with 131I and 90Y have been used in the treatment of malignant disease with some success. The use of alpha-particle-emitting radionuclides as radiolabels offers potential advantages over beta-particle sources. The short range in tissue (< 100 microns) and the high linear energy transfer associated with alpha-particle emitters will result in a more concentrated deposition of energy at the site of radionuclide decay. Thus, if radiolabeled antibodies can be bound to malignant cells specifically, a high differential cell killing can be achieved between the malignant and the normal cells. However, the energy deposition pattern will be strongly dependent upon the configuration of alpha-particle sources relative to the cells, and will consequently impact upon the dose-response characteristics. The purpose of this paper is to study distributions of energy deposition from alpha-particle-emitting radioimmunoconjugates distributed uniformly and nonuniformly around cells through theoretical modeling. Energy deposition spectra for cell nuclei are calculated and used to estimate the survival fraction by a simple biological model. We show that survival curves resulting from nonuniform distributions of alpha-particle-emitting radiolabeled antibodies can depart significantly from the classical exponential survival model applied to external alpha-particle beams. The survival curves may have initial slopes much steeper than those produced by a uniform distribution of sources, and they may also depart from linearity. Furthermore, the results of the modelling indicate how survival curves are dependent on the cell and radiolabel spacing. The results from our model compare reasonably well with published experimental data and can be used to facilitate the design and interpretation of radiobiological experiments.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011868 Radioisotopes Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Daughter Isotope,Daughter Nuclide,Radioactive Isotope,Radioactive Isotopes,Radiogenic Isotope,Radioisotope,Radionuclide,Radionuclides,Daughter Nuclides,Daugter Isotopes,Radiogenic Isotopes,Isotope, Daughter,Isotope, Radioactive,Isotope, Radiogenic,Isotopes, Daugter,Isotopes, Radioactive,Isotopes, Radiogenic,Nuclide, Daughter,Nuclides, Daughter
D001729 Bismuth A metallic element that has the atomic symbol Bi, and atomic number 83. Its principal isotope is Bismuth 209.
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D000512 Alpha Particles Positively charged particles composed of two protons and two NEUTRONS, i.e. equivalent to HELIUM nuclei, which are emitted during disintegration of heavy ISOTOPES. Alpha rays have very strong ionizing power, but weak penetrability. Alpha Rays,Alpha Radiation,Radiation, Alpha,Alpha Particle,Alpha Ray,Particle, Alpha,Particles, Alpha,Ray, Alpha,Rays, Alpha
D001246 Astatine Astatine. A radioactive halogen with the atomic symbol At, and atomic number 85. Its isotopes range in mass number from 200 to 219 and all have an extremely short half-life. Astatine may be of use in the treatment of hyperthyroidism because it emits ALPHA PARTICLES.
D016499 Radioimmunotherapy Radiotherapy where cytotoxic radionuclides are linked to antibodies in order to deliver toxins directly to tumor targets. Therapy with targeted radiation rather than antibody-targeted toxins (IMMUNOTOXINS) has the advantage that adjacent tumor cells, which lack the appropriate antigenic determinants, can be destroyed by radiation cross-fire. Radioimmunotherapy is sometimes called targeted radiotherapy, but this latter term can also refer to radionuclides linked to non-immune molecules (see RADIOTHERAPY). Immunoradiotherapy,Immunoradiotherapies,Radioimmunotherapies

Related Publications

J L Humm, and L M Chin
August 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
J L Humm, and L M Chin
December 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
J L Humm, and L M Chin
December 1999, Radiation research,
J L Humm, and L M Chin
September 2016, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
J L Humm, and L M Chin
July 2023, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
Copied contents to your clipboard!