Relationships between cell survival and specific energy spectra for therapeutic alpha-particle emitters. 1996

J C Roeske, and T G Stinchcomb
University of Chicago, Department of Radiation and Cellular Oncology, Illinois 60637, USA.

Cell survival studies are a means of quantifying the biological effects of radiation. However, for alpha-particle sources, the dose-response relationship is complicated by the dominance of microdosimetric effects. In this work, we relate observed cell survival to the microdosimetric energy deposition spectra. The chord length distributions through spherical cell nuclei for sources distributed inside of, on the surface of and outside of the critical target are used as approximate analytical representations of the single-event specific energy spectra. Mathematical relationships are derived which relate cell survival to the Laplace transform of the single-event specific energy spectrum. The result is an analytical relationship between D0 (the observed slope of the cell survival curve) and Z0 (the specific energy required to reduce the survival probability of a single cell to 1/e). These studies indicate that for small energy deposition events, Z0 is approximately equal to D0. However, as the maximum energy deposited by a single event is increased, there are marked deviations between Z0 and D0. These differences between Z0 and D0 are also related to the shape of the single-event spectrum. This technique provides a powerful tool for relating observed cell survival to microdosimetric quantities for therapeutic alpha-particle emitters.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000512 Alpha Particles Positively charged particles composed of two protons and two NEUTRONS, i.e. equivalent to HELIUM nuclei, which are emitted during disintegration of heavy ISOTOPES. Alpha rays have very strong ionizing power, but weak penetrability. Alpha Rays,Alpha Radiation,Radiation, Alpha,Alpha Particle,Alpha Ray,Particle, Alpha,Particles, Alpha,Ray, Alpha,Rays, Alpha

Related Publications

J C Roeske, and T G Stinchcomb
July 2002, International journal of radiation biology,
J C Roeske, and T G Stinchcomb
May 1993, Radiation research,
J C Roeske, and T G Stinchcomb
January 1983, Radiation and environmental biophysics,
J C Roeske, and T G Stinchcomb
December 1999, Radiation research,
J C Roeske, and T G Stinchcomb
January 1984, Basic life sciences,
J C Roeske, and T G Stinchcomb
July 2023, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
J C Roeske, and T G Stinchcomb
December 1988, Physical review. C, Nuclear physics,
J C Roeske, and T G Stinchcomb
January 1992, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes,
Copied contents to your clipboard!